36 resultados para infinitesimal Alexander invariant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider vector fields in R3 that are invariant under a suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two singular points (e+ and e −) and their invariant manifolds: one of dimension 2 (a sphere minus the points e+ and e −) and one of dimension 1 (the open diameter of the sphere having endpoints e+ and e −). In particular, we analyze the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar´e map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R3, and the second one is the charged rhomboidal four body problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In two previous papers [J. Differential Equations, 228 (2006), pp. 530 579; Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 1261 1300] we have developed fast algorithms for the computations of invariant tori in quasi‐periodic systems and developed theorems that assess their accuracy. In this paper, we study the results of implementing these algorithms and study their performance in actual implementations. More importantly, we note that, due to the speed of the algorithms and the theoretical developments about their reliability, we can compute with confidence invariant objects close to the breakdown of their hyperbolicity properties. This allows us to identify a mechanism of loss of hyperbolicity and measure some of its quantitative regularities. We find that some systems lose hyperbolicity because the stable and unstable bundles approach each other but the Lyapunov multipliers remain away from 1. We find empirically that, close to the breakdown, the distances between the invariant bundles and the Lyapunov multipliers which are natural measures of hyperbolicity depend on the parameters, with power laws with universal exponents. We also observe that, even if the rigorous justifications in [J. Differential Equations, 228 (2006), pp. 530-579] are developed only for hyperbolic tori, the algorithms work also for elliptic tori in Hamiltonian systems. We can continue these tori and also compute some bifurcations at resonance which may lead to the existence of hyperbolic tori with nonorientable bundles. We compute manifolds tangent to nonorientable bundles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an algorithm for the computation of reducible invariant tori of discrete dynamical systems that is suitable for tori of dimensions larger than 1. It is based on a quadratically convergent scheme that approximates, at the same time, the Fourier series of the torus, its Floquet transformation, and its Floquet matrix. The Floquet matrix describes the linearization of the dynamics around the torus and, hence, its linear stability. The algorithm presents a high degree of parallelism, and the computational effort grows linearly with the number of Fourier modes needed to represent the solution. For these reasons it is a very good option to compute quasi-periodic solutions with several basic frequencies. The paper includes some examples (flows) to show the efficiency of the method in a parallel computer. In these flows we compute invariant tori of dimensions up to 5, by taking suitable sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo es una propuesta de integración de la Técnica Alexander y la Danza Movimiento Terapia. Partiendo de la realidad de que ambas técnicas tienen como objetivo final la integración de la dimensión de la psique, del cuerpo y de la emoción, para restaurar el equilibrio integral del ser humano que como consecuencia aporta un estado de salud al individuo. Cada una de ellas se posiciona sobre un camino diferente hacia la curación, aunque comparten muchas bases en común. Una de ellas trata del aprendizaje de un método: la Técnica Alexander, y la otra es una forma de psicoterapia para realizar un proceso terapéutico: la Danza Movimiento Terápia. Una se focaliza en la reeducación del uso psicofísico del individuo y en su interacción con el mundo interno y externo (TA) y el otro en la expresión y despliegue psico / corporal / emocional para la transformación y el desarrollo personal, y la curación del trauma (DMT). Como cada una de ellas ha desarrollado un aspecto más profundamente que otro, en el caso de la TA: la estructura psicofísica primaria y estructural orgánica, y la DMT: la emoción: su expresión y capacidad para la transformación. Y es estos aspectos más desarrollados que pueden enriquecer y desarrollar a la otra. Este texto aporta un estudio comparativo entre ambos métodos, los objetivos y la teoría que comparten como los aspectos en los que divergen. Finalmente se propone una hipótesis de integración de la TA, como técnica base de formación psicocorporal del estudiante dentro de un programa de formación de la DMT, y la DMT como técnica psicoterapéutica de acompañamiento de los estudiantes en formación de profesores de la TA.