35 resultados para energy cost of activity
Resumo:
Pensions together with savings and investments during active life are key elements of retirement planning. Motivation for personal choices about the standard of living, bequest and the replacement ratio of pension with respect to last salary income must be considered. This research contributes to the financial planning by helping to quantify long-term care economic needs. We estimate life expectancy from retirement age onwards. The economic cost of care per unit of service is linked to the expected time of needed care and the intensity of required services. The expected individual cost of long-term care from an onset of dependence is estimated separately for men and women. Assumptions on the mortality of the dependent people compared to the general population are introduced. Parameters defining eligibility for various forms of coverage by the universal public social care of the welfare system are addressed. The impact of the intensity of social services on individual predictions is assessed, and a partial coverage by standard private insurance products is also explored. Data were collected by the Spanish Institute of Statistics in two surveys conducted on the general Spanish population in 1999 and in 2008. Official mortality records and life table trends were used to create realistic scenarios for longevity. We find empirical evidence that the public long-term care system in Spain effectively mitigates the risk of incurring huge lifetime costs. We also find that the most vulnerable categories are citizens with moderate disabilities that do not qualify to obtain public social care support. In the Spanish case, the trends between 1999 and 2008 need to be further explored.
Resumo:
The Kyoto protocol allows Annex I countries to deduct carbon sequestered by land use, land-use change and forestry from their national carbon emissions. Thornley and Cannell (2000) demonstrated that the objectives of maximizing timber and carbon sequestration are not complementary. Based on this finding, this paper determines the optimal selective management regime taking into account the underlying biophysical and economic processes. The results show that the net benefits of carbon storage only compensate the decrease in net benefits of timber production once the carbon price has exceeded a certain threshold value. The sequestration costs are significantly lower than previous estimates
Resumo:
Yield spreads over 10-year German government securities of the EU-15 countries converged dramatically in the seven years after the beginning of Monetary Integration. In this paper, we investigate the relative influence of systemic and idiosyncratic risk factors on their behaviour. Our conclusions suggest that in EMU-countries the relative importance of domestic risk factors (both credit and liquidity risk factors) is higher than that of international factors, which appear to play a secondary but significant role in non-EMU countries.
Resumo:
In this study I try to explain the systemic problem of the low economic competitiveness of nuclear energy for the production of electricity by carrying out a biophysical analysis of its production process. Given the fact that neither econometric approaches nor onedimensional methods of energy analyses are effective, I introduce the concept of biophysical explanation as a quantitative analysis capable of handling the inherent ambiguity associated with the concept of energy. In particular, the quantities of energy, considered as relevant for the assessment, can only be measured and aggregated after having agreed on a pre-analytical definition of a grammar characterizing a given set of finite transformations. Using this grammar it becomes possible to provide a biophysical explanation for the low economic competitiveness of nuclear energy in the production of electricity. When comparing the various unit operations of the process of production of electricity with nuclear energy to the analogous unit operations of the process of production of fossil energy, we see that the various phases of the process are the same. The only difference is related to characteristics of the process associated with the generation of heat which are completely different in the two systems. Since the cost of production of fossil energy provides the base line of economic competitiveness of electricity, the (lack of) economic competitiveness of the production of electricity from nuclear energy can be studied, by comparing the biophysical costs associated with the different unit operations taking place in nuclear and fossil power plants when generating process heat or net electricity. In particular, the analysis focuses on fossil-fuel requirements and labor requirements for those phases that both nuclear plants and fossil energy plants have in common: (i) mining; (ii) refining/enriching; (iii) generating heat/electricity; (iv) handling the pollution/radioactive wastes. By adopting this approach, it becomes possible to explain the systemic low economic competitiveness of nuclear energy in the production of electricity, because of: (i) its dependence on oil, limiting its possible role as a carbon-free alternative; (ii) the choices made in relation to its fuel cycle, especially whether it includes reprocessing operations or not; (iii) the unavoidable uncertainty in the definition of the characteristics of its process; (iv) its large inertia (lack of flexibility) due to issues of time scale; and (v) its low power level.
Resumo:
The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO2, CH4 and N2O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO2 emissions may decrease, the effect is counterbalanced by increased N2O emissions, especially since N2O has a 300-fold stronger greenhouse effect than CO2. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making