100 resultados para electronic structure


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we demonstrate that conductive atomic force microscopy (C-AFM) is a very powerful tool to investigate, at the nanoscale, metal-oxide-semiconductor structures with silicon nanocrystals (Si-nc) embedded in the gate oxide as memory devices. The high lateral resolution of this technique allows us to study extremely small areas ( ~ 300nm2) and, therefore, the electrical properties of a reduced number of Si-nc. C-AFM experiments have demonstrated that Si-nc enhance the gate oxide electrical conduction due to trap-assisted tunneling. On the other hand, Si-nc can act as trapping centers. The amount of charge stored in Si-nc has been estimated through the change induced in the barrier height measured from the I-V characteristics. The results show that only ~ 20% of the Si-nc are charged, demonstrating that the electrical behavior at the nanoscale is consistent with the macroscopic characterization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method to determine the thermal cross section of a deep level from capacitance measurements is reported. The results enable us to explain the nonexponential behavior of the capacitance versus capture time when the trap concentration is not negligible with respect to that of the shallow one, and the Debye tail effects are taken into account. A figure of merit for the nonexponential behavior of the capture process is shown and discussed for different situations of doping and applied bias. We have also considered the influence of the position of the trap level"s energy on the nonexponentiality of the capture transient. The experimental results are given for the gold acceptor level in silicon and for the DX center in Al0.55 Ga0.45As, which are in good agreement with the developed theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work, an analysis of the dark and optical capacitance transients obtained from Schottky Au:GaAs barriers implanted with boron has been carried out by means of the isothermal transient spectroscopy (ITS) and differential and optical ITS techniques. Unlike deep level transient spectroscopy, the use of these techniques allows one to easily distinguish contributions to the transients different from those of the usual deep trap emission kinetics. The results obtained show the artificial creation of the EL2, EL6, and EL5 defects by the boron implantation process. Moreover, the interaction mechanism between the EL2 and other defects, which gives rise to the U band, has been analyzed. The existence of a reorganization process of the defects involved has been observed, which prevents the interaction as the temperature increases. The activation energy of this process has been found to be dependent on the temperature of the annealing treatment after implantation, with values of 0.51 and 0.26 eV for the as‐implanted and 400 °C annealed samples, respectively. The analysis of the optical data has corroborated the existence of such interactions involving all the observed defects that affect their optical parameters

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An analysis of silicon on insulator structures obtained by single and multiple implants by means of Raman scattering and photoluminescence spectroscopy is reported. The Raman spectra obtained with different excitation powers and wavelengths indicate the presence of a tensile strain in the top silicon layer of the structures. The comparison between the spectra measured in both kinds of samples points out the existence in the multiple implant material of a lower strain for a penetration depth about 300 nm and a higher strain for higher penetration depths. These results have been correlated with transmission electron microscopy observations, which have allowed to associate the higher strain to the presence of SiO2 precipitates in the top silicon layer, close to the buried oxide. The found lower strain is in agreement with the better quality expected for this material, which is corroborated by the photoluminescence data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The variation in the emission of Si+ ions from ion-beam-induced oxidized silicon surfaces has been studied. The stoichiometry and the electronic structure of the altered layer has been characterized using x-ray photoelectron spectroscopy (XPS). The XPS analysis of the Si 2p core level indicates the strong presence of suboxide chemical states when bombarding at angles of incidence larger than 30 °. Since the surface stoichiometry or degree of oxidation varies with the angle of incidence, the corresponding valence-band structures also differ among each other. A comparison between experimental measurements and theoretically calculated Si and SiO2 valence bands indicates that the valence bands for the altered layers are formed by a combination of those two. Since Si-Si bonds are present in the suboxide molecules, the top of the respective new valence bands are formed by the corresponding 3p-3p Si-like subbands, which extend up to the Si Fermi level. The changes in stoichiometry and electronic structure have been correlated with the emission of Si+ ions from these surfaces. From the results a general model for the Si+ ion emission is proposed combining the resonant tunneling and local-bond-breaking models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within a drift-diffusion model we investigate the role of the self-consistent electric field in determining the impedance field of a macroscopic Ohmic (linear) resistor made by a compensated semi-insulating semiconductor at arbitrary values of the applied voltage. The presence of long-range Coulomb correlations is found to be responsible for a reshaping of the spatial profile of the impedance field. This reshaping gives a null contribution to the macroscopic impedance but modifies essentially the transition from thermal to shot noise of a macroscopic linear resistor. Theoretical calculations explain a set of noise experiments carried out in semi-insulating CdZnTe detectors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systematic trends in the properties of a linear split-gate heterojunction are studied by solving iteratively the Poisson and Schrödinger equations for different gate potentials and temperatures. A two-dimensional approximation is presented that is much simpler in the numerical implementation and that accurately reproduces all significant trends. In deriving this approximation, we provide a rigorous and quantitative basis for the formulation of models that assumes a two-dimensional character for the electron gas at the junction.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Integer filling factor phases of many-electron vertically coupled diatomic artificial quantum dot molecules are investigated for different values of the interdot coupling. The experimental results are analyzed within local-spin density functional theory for which we have determined a simple lateral confining potential law that can be scaled for the different coupling regimes, and Hartree-Fock theory. Maximum density droplets composed of electrons in both bonding and antibonding or just bonding states are revealed, and interesting isospin-flip physics appears for weak interdot coupling when the systematic depopulation of antibonding states leads to changes in isospin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Darwin-Foldy nuclear-size corrections in electronic atoms and nuclear radii are discussed from the nuclear-physics perspective. The interpretation of precise isotope-shift measurements is formalism dependent, and care must be exercised in interpreting these results and those obtained from relativistic electron scattering from nuclei. We strongly advocate that the entire nuclear-charge operator be used in calculating nuclear-size corrections in atoms rather than relegating portions of it to the nonradiative recoil corrections. A preliminary examination of the intrinsic deuteron radius obtained from isotope-shift measurements suggests the presence of small meson-exchange currents (exotic binding contributions of relativistic order) in the nuclear charge operator, which contribute approximately 1/2%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within local-spin-density functional theory, we have investigated the ¿dissociation¿ of few-electron circular vertical semiconductor double quantum ring artificial molecules at zero magnetic field as a function of interring distance. In a first step, the molecules are constituted by two identical quantum rings. When the rings are quantum mechanically strongly coupled, the electronic states are substantially delocalized, and the addition energy spectra of the artificial molecule resemble those of a single quantum ring in the few-electron limit. When the rings are quantum mechanically weakly coupled, the electronic states in the molecule are substantially localized in one ring or the other, although the rings can be electrostatically coupled. The effect of a slight mismatch introduced in the molecules from nominally identical quantum wells, or from changes in the inner radius of the constituent rings, induces localization by offsetting the energy levels in the quantum rings. This plays a crucial role in the appearance of the addition spectra as a function of coupling strength particularly in the weak coupling limit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent improvements in the determination of the running of the fine-structure constant also allow an update of the hadronic vacuum-polarization contribution to the Lamb shift. We find a shift of -3.40(7) kHz to the 1S level of hydrogen. We also comment on the contribution of this effect to the determination by elastic electron scattering of the rms radii of nuclei.