74 resultados para distribution channels
Resumo:
Monitor a distribution network implies working with a huge amount of data coining from the different elements that interact in the network. This paper presents a visualization tool that simplifies the task of searching the database for useful information applicable to fault management or preventive maintenance of the network
Resumo:
A novel test of spatial independence of the distribution of crystals or phases in rocksbased on compositional statistics is introduced. It improves and generalizes the commonjoins-count statistics known from map analysis in geographic information systems.Assigning phases independently to objects in RD is modelled by a single-trial multinomialrandom function Z(x), where the probabilities of phases add to one and areexplicitly modelled as compositions in the K-part simplex SK. Thus, apparent inconsistenciesof the tests based on the conventional joins{count statistics and their possiblycontradictory interpretations are avoided. In practical applications we assume that theprobabilities of phases do not depend on the location but are identical everywhere inthe domain of de nition. Thus, the model involves the sum of r independent identicalmultinomial distributed 1-trial random variables which is an r-trial multinomialdistributed random variable. The probabilities of the distribution of the r counts canbe considered as a composition in the Q-part simplex SQ. They span the so calledHardy-Weinberg manifold H that is proved to be a K-1-affine subspace of SQ. This isa generalisation of the well-known Hardy-Weinberg law of genetics. If the assignmentof phases accounts for some kind of spatial dependence, then the r-trial probabilitiesdo not remain on H. This suggests the use of the Aitchison distance between observedprobabilities to H to test dependence. Moreover, when there is a spatial uctuation ofthe multinomial probabilities, the observed r-trial probabilities move on H. This shiftcan be used as to check for these uctuations. A practical procedure and an algorithmto perform the test have been developed. Some cases applied to simulated and realdata are presented.Key words: Spatial distribution of crystals in rocks, spatial distribution of phases,joins-count statistics, multinomial distribution, Hardy-Weinberg law, Hardy-Weinbergmanifold, Aitchison geometry
Resumo:
The space subdivision in cells resulting from a process of random nucleation and growth is a subject of interest in many scientific fields. In this paper, we deduce the expected value and variance of these distributions while assuming that the space subdivision process is in accordance with the premises of the Kolmogorov-Johnson-Mehl-Avrami model. We have not imposed restrictions on the time dependency of nucleation and growth rates. We have also developed an approximate analytical cell size probability density function. Finally, we have applied our approach to the distributions resulting from solid phase crystallization under isochronal heating conditions
Resumo:
Several airline consolidation events have recently been completed both in Europe and in the United States. The model we develop considers two airlines operating hub-and-spoke networks, using different hubs to connect the same spoke airports. We assume the airlines to be vertically differentiated, which allows us to distinguish between primary and secondary hubs. We conclude that this differentiation in air services becomes more accentuated after consolidation, with an increased number of flights being channeled through the primary hub. However, congestion can act as a brake on the concentration of flight frequency in the primary hub following consolidation. Our empirical application involves an analysis of Delta s network following its merger with Northwest. We find evidence consistent with an increase in the importance of Delta s primary hubs at the expense of its secondary airports. We also find some evidence suggesting that the carrier chooses to divert traffic away from those hub airports that were more prone to delays prior to the merger, in particular New York s JFK airport. Keywords: primary hub; secondary hub; airport congestion; airline consolidation; airline networks JEL Classi fication Numbers: D43; L13; L40; L93; R4
Resumo:
Background: Asparagine N-Glycosylation is one of the most important forms of protein post-translational modification in eukaryotes. This metabolic pathway can be subdivided into two parts: an upstream sub-pathway required for achieving proper folding for most of the proteins synthesized in the secretory pathway, and a downstream sub-pathway required to give variability to trans-membrane proteins, and involved in adaptation to the environment andinnate immunity. Here we analyze the nucleotide variability of the genes of this pathway in human populations, identifying which genes show greater population differentiation and which genes show signatures of recent positive selection. We also compare how these signals are distributed between the upstream and the downstream parts of the pathway, with the aim of exploring how forces of population differentiation and positive selection vary among genes involved in the same metabolic pathway but subject to different functional constraints. Results:Our results show that genes in the downstream part of the pathway are more likely to show a signature of population differentiation, while events of positive selection are equally distributed among the two parts of the pathway. Moreover, events of positive selection arefrequent on genes that are known to be at bifurcation points, and that are identified as beingin key position by a network-level analysis such as MGAT3 and GCS1.Conclusions: These findings indicate that the upstream part of the Asparagine N-Glycosylation pathway has lower diversity among populations, while the downstream part is freer to tolerate diversity among populations. Moreover, the distribution of signatures of population differentiation and positive selection can change between parts of a pathway, especially between parts that are exposed to different functional constraints. Our results support the hypothesis that genes involved in constitutive processes can be expected to show lower population differentiation, while genes involved in traits related to the environment should show higher variability. Taken together, this work broadens our knowledge on how events of population differentiation and of positive selection are distributed among different parts of a metabolic pathway.
Resumo:
Kv3.1 and Kv3.2 K+ channel proteins form similar voltage-gated K+ channels with unusual properties, including fast activation at voltages positive to −10 mV and very fast deactivation rates. These properties are thought to facilitate sustained high-frequency firing. Kv3.1 subunits are specifically found in fast-spiking, parvalbumin (PV)-containing cortical interneurons, and recent studies have provided support for a crucial role in the generation of the fast-spiking phenotype. Kv3.2 mRNAs are also found in a small subset of neocortical neurons, although the distribution of these neurons is different. We raised antibodies directed against Kv3.2 proteins and used dual-labeling methods to identify the neocortical neurons expressing Kv3.2 proteins and to determine their subcellular localization. Kv3.2 proteins are prominently expressed in patches in somatic and proximal dendritic membrane as well as in axons and presynaptic terminals of GABAergic interneurons. Kv3.2 subunits are found in all PV-containing neurons in deep cortical layers where they probably form heteromultimeric channels with Kv3.1 subunits. In contrast, in superficial layer PV-positive neurons Kv3.2 immunoreactivity is low, but Kv3.1 is still prominently expressed. Because Kv3.1 and Kv3.2 channels are differentially modulated by protein kinases, these results raise the possibility that the fast-spiking properties of superficial- and deep-layer PV neurons are differentially regulated by neuromodulators. Interestingly, Kv3.2 but not Kv3.1 proteins are also prominent in a subset of seemingly non-fast-spiking, somatostatin- and calbindin-containing interneurons, suggesting that the Kv3.1–Kv3.2 current type can have functions other than facilitating high-frequency firing.
Resumo:
The optimization of the pilot overhead in single-user wireless fading channels is investigated, and the dependence of this overhead on various system parameters of interest (e.g., fading rate, signal-to-noise ratio) is quantified. The achievable pilot-based spectral efficiency is expanded with respect to the fading rate about the no-fading point, which leads to an accurate order expansion for the pilot overhead. This expansion identifies that the pilot overhead, as well as the spectral efficiency penalty with respect to a reference system with genie-aided CSI (channel state information) at the receiver, depend on the square root of the normalized Doppler frequency. It is also shown that the widely-used block fading model is a special case of more accurate continuous fading models in terms of the achievable pilot-based spectral efficiency. Furthermore, it is established that the overhead optimization for multiantenna systems is effectively the same as for single-antenna systems with the normalized Doppler frequency multiplied by the number of transmit antennas.
Resumo:
In the context of fading channels it is well established that, with a constrained transmit power, the bit rates achievable by signals that are not peaky vanish as the bandwidth grows without bound. Stepping back from the limit, we characterize the highest bit rate achievable by such non-peaky signals and the approximate bandwidth where that apex occurs. As it turns out, the gap between the highest rate achievable without peakedness and the infinite-bandwidth capacity (with unconstrained peakedness) is small for virtually all settings of interest to wireless communications. Thus, although strictly achieving capacity in wideband fading channels does require signal peakedness, bit rates not far from capacity can be achieved with conventional signaling formats that do not exhibit the serious practical drawbacks associated with peakedness. In addition, we show that the asymptotic decay of bit rate in the absence of peakedness usually takes hold at bandwidths so large that wideband fading models are called into question. Rather, ultrawideband models ought to be used.
Resumo:
This paper applies random matrix theory to obtain analytical characterizations of the capacity of correlated multiantenna channels. The analysis is not restricted to the popular separable correlation model, but rather it embraces a more general representation that subsumesmost of the channel models that have been treated in the literature. For arbitrary signal-to-noise ratios (SNR), the characterization is conducted in the regime of large numbers of antennas. For the low- and high-SNR regions, in turn, we uncover compact capacity expansions that are valid for arbitrary numbers of antennas and that shed insight on how antenna correlation impacts the tradeoffs between power, bandwidth and rate.
Resumo:
The mutual information of independent parallel Gaussian-noise channels is maximized, under an average power constraint, by independent Gaussian inputs whose power is allocated according to the waterfilling policy. In practice, discrete signalling constellations with limited peak-to-average ratios (m-PSK, m-QAM, etc) are used in lieu of the ideal Gaussian signals. This paper gives the power allocation policy that maximizes the mutual information over parallel channels with arbitrary input distributions. Such policy admits a graphical interpretation, referred to as mercury/waterfilling, which generalizes the waterfilling solution and allows retaining some of its intuition. The relationship between mutual information of Gaussian channels and nonlinear minimum mean-square error proves key to solving the power allocation problem.
Resumo:
In the past, sensors networks in cities have been limited to fixed sensors, embedded in particular locations, under centralised control. Today, new applications can leverage wireless devices and use them as sensors to create aggregated information. In this paper, we show that the emerging patterns unveiled through the analysis of large sets of aggregated digital footprints can provide novel insights into how people experience the city and into some of the drivers behind these emerging patterns. We particularly explore the capacity to quantify the evolution of the attractiveness of urban space with a case study of in the area of the New York City Waterfalls, a public art project of four man-made waterfalls rising from the New York Harbor. Methods to study the impact of an event of this nature are traditionally based on the collection of static information such as surveys and ticket-based people counts, which allow to generate estimates about visitors’ presence in specific areas over time. In contrast, our contribution makes use of the dynamic data that visitors generate, such as the density and distribution of aggregate phone calls and photos taken in different areas of interest and over time. Our analysis provides novel ways to quantify the impact of a public event on the distribution of visitors and on the evolution of the attractiveness of the points of interest in proximity. This information has potential uses for local authorities, researchers, as well as service providers such as mobile network operators.
Resumo:
In this work we describe the usage of bilinear statistical models as a means of factoring the shape variability into two components attributed to inter-subject variation and to the intrinsic dynamics of the human heart. We show that it is feasible to reconstruct the shape of the heart at discrete points in the cardiac cycle. Provided we are given a small number of shape instances representing the same heart atdifferent points in the same cycle, we can use the bilinearmodel to establish this. Using a temporal and a spatial alignment step in the preprocessing of the shapes, around half of the reconstruction errors were on the order of the axial image resolution of 2 mm, and over 90% was within 3.5 mm. From this, weconclude that the dynamics were indeed separated from theinter-subject variability in our dataset.
Resumo:
Introducción y objetivos. Se ha señalado que, en la miocardiopatía hipertrófica (MCH), la desorganización de las fibras regionales da lugar a segmentos en los que la deformación es nula o está gravemente reducida, y que estos segmentos tienen una distribución no uniforme en el ventrículo izquierdo (VI). Esto contrasta con lo observado en otros tipos de hipertrofia como en el corazón de atleta o la hipertrofia ventricular izquierda hipertensiva (HVI-HT), en los que puede haber una deformación cardiaca anormal, pero nunca tan reducida como para que se observe ausencia de deformación. Así pues, proponemos el empleo de la distribución de los valores de strain para estudiar la deformación en la MCH. Métodos. Con el empleo de resonancia magnética marcada (tagged), reconstruimos la deformación sistólica del VI de 12 sujetos de control, 10 atletas, 12 pacientes con MCH y 10 pacientes con HVI-HT. La deformación se cuantificó con un algoritmo de registro no rígido y determinando los valores de strain sistólico máximo radial y circunferencial en 16 segmentos del VI. Resultados. Los pacientes con MCH presentaron unos valores medios de strain significativamente inferiores a los de los demás grupos. Sin embargo, aunque la deformación observada en los individuos sanos y en los pacientes con HVI-HT se concentraba alrededor del valor medio, en la MCH coexistían segmentos con contracción normal y segmentos con una deformación nula o significativamente reducida, con lo que se producía una mayor heterogeneidad de los valores de strain. Se observaron también algunos segmentos sin deformación incluso en ausencia de fibrosis o hipertrofia. Conclusiones. La distribución de strain caracteriza los patrones específicos de deformación miocárdica en pacientes con diferentes etiologías de la HVI. Los pacientes con MCH presentaron un valor medio de strain significativamente inferior, así como una mayor heterogeneidad de strain (en comparación con los controles, los atletas y los pacientes con HVI-HT), y tenían regiones sin deformación.
Resumo:
In a distributed key distribution scheme, a set of servers helps a set of users in a group to securely obtain a common key. Security means that an adversary who corrupts some servers and some users has no information about the key of a noncorrupted group. In this work, we formalize the security analysis of one such scheme which was not considered in the original proposal. We prove the scheme is secure in the random oracle model, assuming that the Decisional Diffie-Hellman (DDH) problem is hard to solve. We also detail a possible modification of that scheme and the one in which allows us to prove the security of the schemes without assuming that a specific hash function behaves as a random oracle. As usual, this improvement in the security of the schemes is at the cost of an efficiency loss.
Resumo:
Wireless “MIMO” systems, employing multiple transmit and receive antennas, promise a significant increase of channel capacity, while orthogonal frequency-division multiplexing (OFDM) is attracting a good deal of attention due to its robustness to multipath fading. Thus, the combination of both techniques is an attractive proposition for radio transmission. The goal of this paper is the description and analysis of a new and novel pilot-aided estimator of multipath block-fading channels. Typical models leading to estimation algorithms assume the number of multipath components and delays to be constant (and often known), while their amplitudes are allowed to vary with time. Our estimator is focused instead on the more realistic assumption that the number of channel taps is also unknown and varies with time following a known probabilistic model. The estimation problem arising from these assumptions is solved using Random-Set Theory (RST), whereby one regards the multipath-channel response as a single set-valued random entity.Within this framework, Bayesian recursive equations determine the evolution with time of the channel estimator. Due to the lack of a closed form for the solution of Bayesian equations, a (Rao–Blackwellized) particle filter (RBPF) implementation ofthe channel estimator is advocated. Since the resulting estimator exhibits a complexity which grows exponentially with the number of multipath components, a simplified version is also introduced. Simulation results describing the performance of our channel estimator demonstrate its effectiveness.