64 resultados para customer servide
Resumo:
El proyecto puede dividirse en dos grandes partes, diseño de un portal deportivo y análisis de una herramienta Open Source para el desarrollo de portales web. El apartado de diseño cuenta con un club de atletismo que proporciona unos requerimientos y necesidades de cara a tener un problema real y no basado en especulaciones. Se ha diseñado tanto la base de datos como la estructura del portal y se tienen en cuenta las necesidades del cliente. La parte de análisis de una herramienta Open Source desglosa los módulos de esta, viendo que necesidades cubre cada uno y que pueden hacer, que tecnologías usan y que soluciones pueden dar al problema planteado.
Resumo:
Creació d'una plataforma de comerç electrònic que ofereix recomanacions als clients potencials tenint en compte les accions de la resta d'usuaris, així com les preferències indicades pel client al seu perfil.
Resumo:
L’objectiu dels Serveis Intel·ligents d’Atenció Ciutadana (SAC) és donar resposta a les necessitats d'informació dels ciutadans sobre els serveis i les actuacions del municipi i, per extensió, del conjunt del serveis d'interès ciutadà. Des que l’ iSAC s’ha posat en funcionament, periòdicament s’analitzen les consultes que es fan en el sistema i el grau de satisfacció que la ciutadania té d’aquest servei. Tot i que en general les valoracions són satisfactòries s’ha observat que actualment aquest sistema té un buit, hi ha un ampli ventall de respostes que, de moment, l’iSAC no és capaç de resoldre, i possiblement el 010, el call center del servei d’atenció ciutadana, tampoc. Algunes de les cerques realitzades marxen molt de l’àmbit municipal i és l’experiència de la mateixa ciutadania la que pot oferir un millor resultat. És per aquest motiu que ha sorgit la necessitat de crear wikiSAC. Eina que te com a principals objectius que: poder crear, modificar i eliminar el contingut d’una pàgina de forma interactiva de manera fàcil i ràpida a través d’un navegador web; controlar els continguts ofensius i malintencionats; conservar un historial de canvis; incentivar la participació ciutadana i aconseguir que aquest sigui un lloc on els ciutadans preguntin, suggereixin i opinin sobre temes relacionats amb el seu municipi i aconseguir que els ciutadans es sentin més integrats amb el funcionament de l’administració, col∙laborant en les tasques d’informació i atenció ciutadana
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing from an offerset, have recently become popular in assortment optimization and revenue management. The dynamicprogram for these models is intractable and approximated by a deterministic linear program called theCDLP which has an exponential number of columns. When there are products that are being consideredfor purchase by more than one customer segment, CDLP is difficult to solve since column generationis known to be NP-hard. However, recent research indicates that a formulation based on segments withcuts imposing consistency (SDCP+) is tractable and approximates the CDLP value very closely. In thispaper we investigate the structure of the consideration sets that make the two formulations exactly equal.We show that if the segment consideration sets follow a tree structure, CDLP = SDCP+. We give acounterexample to show that cycles can induce a gap between the CDLP and the SDCP+ relaxation.We derive two classes of valid inequalities called flow and synchronization inequalities to further improve(SDCP+), based on cycles in the consideration set structure. We give a numeric study showing theperformance of these cycle-based cuts.
Resumo:
The choice network revenue management model incorporates customer purchase behavioras a function of the offered products, and is the appropriate model for airline and hotel networkrevenue management, dynamic sales of bundles, and dynamic assortment optimization.The optimization problem is a stochastic dynamic program and is intractable. A certainty-equivalencerelaxation of the dynamic program, called the choice deterministic linear program(CDLP) is usually used to generate dyamic controls. Recently, a compact linear programmingformulation of this linear program was given for the multi-segment multinomial-logit (MNL)model of customer choice with non-overlapping consideration sets. Our objective is to obtaina tighter bound than this formulation while retaining the appealing properties of a compactlinear programming representation. To this end, it is natural to consider the affine relaxationof the dynamic program. We first show that the affine relaxation is NP-complete even for asingle-segment MNL model. Nevertheless, by analyzing the affine relaxation we derive a newcompact linear program that approximates the dynamic programming value function betterthan CDLP, provably between the CDLP value and the affine relaxation, and often comingclose to the latter in our numerical experiments. When the segment consideration sets overlap,we show that some strong equalities called product cuts developed for the CDLP remain validfor our new formulation. Finally we perform extensive numerical comparisons on the variousbounds to evaluate their performance.
Resumo:
Many revenue management (RM) industries are characterized by (a) fixed capacities in theshort term (e.g., hotel rooms, seats on an airline flight), (b) homogeneous products (e.g., twoairline flights between the same cities at similar times), and (c) customer purchasing decisionslargely influenced by price. Competition in these industries is also very high even with just twoor three direct competitors in a market. However, RM competition is not well understood andpractically all known implementations of RM software and most published models of RM donot explicitly model competition. For this reason, there has been considerable recent interestand research activity to understand RM competition. In this paper we study price competitionfor an oligopoly in a dynamic setting, where each of the sellers has a fixed number of unitsavailable for sale over a fixed number of periods. Demand is stochastic, and depending on howit evolves, sellers may change their prices at any time. This reflects the fact that firms constantly,and almost costlessly, change their prices (alternately, allocations at a price in quantity-basedRM), reacting either to updates in their estimates of market demand, competitor prices, orinventory levels. We first prove existence of a unique subgame-perfect equilibrium for a duopoly.In equilibrium, in each state sellers engage in Bertrand competition, so that the seller withthe lowest reservation value ends up selling a unit at a price that is equal to the equilibriumreservation value of the competitor. This structure hence extends the marginal-value conceptof bid-price control, used in many RM implementations, to a competitive model. In addition,we show that the seller with the lowest capacity sells all its units first. Furthermore, we extendthe results transparently to n firms and perform a number of numerical comparative staticsexploiting the uniqueness of the subgame-perfect equilibrium.
Resumo:
We offer a formulation that locates hubs on a network in a competitiveenvironment; that is, customer capture is sought, which happenswhenever the location of a new hub results in a reduction of thecurrent cost (time, distance) needed by the traffic that goes from thespecified origin to the specified destination.The formulation presented here reduces the number of variables andconstraints as compared to existing covering models. This model issuited for both air passenger and cargo transportation.In this model, each origin-destination flow can go through either oneor two hubs, and each demand point can be assigned to more than a hub,depending on the different destinations of its traffic. Links(``spokes'' have no capacity limit. Computational experience is provided.
Resumo:
Customer choice behavior, such as 'buy-up' and 'buy-down', is an importantphe-nomenon in a wide range of industries. Yet there are few models ormethodologies available to exploit this phenomenon within yield managementsystems. We make some progress on filling this void. Specifically, wedevelop a model of yield management in which the buyers' behavior ismodeled explicitly using a multi-nomial logit model of demand. Thecontrol problem is to decide which subset of fare classes to offer ateach point in time. The set of open fare classes then affects the purchaseprobabilities for each class. We formulate a dynamic program todetermine the optimal control policy and show that it reduces to a dynamicnested allocation policy. Thus, the optimal choice-based policy caneasily be implemented in reservation systems that use nested allocationcontrols. We also develop an estimation procedure for our model based onthe expectation-maximization (EM) method that jointly estimates arrivalrates and choice model parameters when no-purchase outcomes areunobservable. Numerical results show that this combined optimization-estimation approach may significantly improve revenue performancerelative to traditional leg-based models that do not account for choicebehavior.
Resumo:
There are two fundamental puzzles about trade credit: why does it appearto be so expensive,and why do input suppliers engage in the business oflending money? This paper addresses and answers both questions analysingthe interaction between the financial and the industrial aspects of thesupplier-customer relationship. It examines how, in a context of limitedenforceability of contracts, suppliers may have a comparative advantageover banks in lending to their customers because they hold the extrathreat of stopping the supply of intermediate goods. Suppliers may alsoact as lenders of last resort, providing insurance against liquidityshocks that may endanger the survival of their customers. The relativelyhigh implicit interest rates of trade credit result from the existenceof default and insurance premia. The implications of the model areexamined empirically using parametric and nonparametric techniques on apanel of UK firms.
Resumo:
Revenue management (RM) is a complicated business process that can best be described ascontrol of sales (using prices, restrictions, or capacity), usually using software as a tool to aiddecisions. RM software can play a mere informative role, supplying analysts with formatted andsummarized data who use it to make control decisions (setting a price or allocating capacity fora price point), or, play a deeper role, automating the decisions process completely, at the otherextreme. The RM models and algorithms in the academic literature by and large concentrateon the latter, completely automated, level of functionality.A firm considering using a new RM model or RM system needs to evaluate its performance.Academic papers justify the performance of their models using simulations, where customerbooking requests are simulated according to some process and model, and the revenue perfor-mance of the algorithm compared to an alternate set of algorithms. Such simulations, whilean accepted part of the academic literature, and indeed providing research insight, often lackcredibility with management. Even methodologically, they are usually awed, as the simula-tions only test \within-model" performance, and say nothing as to the appropriateness of themodel in the first place. Even simulations that test against alternate models or competition arelimited by their inherent necessity on fixing some model as the universe for their testing. Theseproblems are exacerbated with RM models that attempt to model customer purchase behav-ior or competition, as the right models for competitive actions or customer purchases remainsomewhat of a mystery, or at least with no consensus on their validity.How then to validate a model? Putting it another way, we want to show that a particularmodel or algorithm is the cause of a certain improvement to the RM process compared to theexisting process. We take care to emphasize that we want to prove the said model as the causeof performance, and to compare against a (incumbent) process rather than against an alternatemodel.In this paper we describe a \live" testing experiment that we conducted at Iberia Airlineson a set of flights. A set of competing algorithms control a set of flights during adjacentweeks, and their behavior and results are observed over a relatively long period of time (9months). In parallel, a group of control flights were managed using the traditional mix of manualand algorithmic control (incumbent system). Such \sandbox" testing, while common at manylarge internet search and e-commerce companies is relatively rare in the revenue managementarea. Sandbox testing has an undisputable model of customer behavior but the experimentaldesign and analysis of results is less clear. In this paper we describe the philosophy behind theexperiment, the organizational challenges, the design and setup of the experiment, and outlinethe analysis of the results. This paper is a complement to a (more technical) related paper thatdescribes the econometrics and statistical analysis of the results.
Resumo:
We address the problem of scheduling a multi-station multiclassqueueing network (MQNET) with server changeover times to minimizesteady-state mean job holding costs. We present new lower boundson the best achievable cost that emerge as the values ofmathematical programming problems (linear, semidefinite, andconvex) over relaxed formulations of the system's achievableperformance region. The constraints on achievable performancedefining these formulations are obtained by formulatingsystem's equilibrium relations. Our contributions include: (1) aflow conservation interpretation and closed formulae for theconstraints previously derived by the potential function method;(2) new work decomposition laws for MQNETs; (3) new constraints(linear, convex, and semidefinite) on the performance region offirst and second moments of queue lengths for MQNETs; (4) a fastbound for a MQNET with N customer classes computed in N steps; (5)two heuristic scheduling policies: a priority-index policy, anda policy extracted from the solution of a linear programmingrelaxation.
Resumo:
New location models are presented here for exploring the reduction of facilities in aregion. The first of these models considers firms ceding market share to competitorsunder situations of financial exigency. The goal of this model is to cede the leastmarket share, i.e., retain as much of the customer base as possible while sheddingcostly outlets. The second model considers a firm essentially without competition thatmust shrink it services for economic reasons. This firm is assumed to close outlets sothat the degradation of service is limited. An example is offered within a competitiveenvironment to demonstrate the usefulness of this modeling approach.
Resumo:
The system of beliefs and values, that shaped the model for management and organizations during the 20th century, is just not good enough today. In order to keep a business functioning well and competing successfully in markets that are increasingly more global, complex, professionally demanding, constantly changing and oriented towards quality and customer satisfaction a new model is needed. In this paper, we will propose that both Management by Instructions (MBI) and Management by Objectives (MBO) today give notoriously inadequate results. By contrast, description of a new approach labeled: Management by Values (MBV), seem to be emerging as a strategic leadership tool. The paper outlines this approach and discusses the implementation of MBV as a tool to redesign culture in organizations and prepare them for the next millenium.
Resumo:
Many dynamic revenue management models divide the sale period into a finite number of periods T and assume, invoking a fine-enough grid of time, that each period sees at most one booking request. These Poisson-type assumptions restrict the variability of the demand in the model, but researchers and practitioners were willing to overlook this for the benefit of tractability of the models. In this paper, we criticize this model from another angle. Estimating the discrete finite-period model poses problems of indeterminacy and non-robustness: Arbitrarily fixing T leads to arbitrary control values and on the other hand estimating T from data adds an additional layer of indeterminacy. To counter this, we first propose an alternate finite-population model that avoids this problem of fixing T and allows a wider range of demand distributions, while retaining the useful marginal-value properties of the finite-period model. The finite-population model still requires jointly estimating market size and the parameters of the customer purchase model without observing no-purchases. Estimation of market-size when no-purchases are unobservable has rarely been attempted in the marketing or revenue management literature. Indeed, we point out that it is akin to the classical statistical problem of estimating the parameters of a binomial distribution with unknown population size and success probability, and hence likely to be challenging. However, when the purchase probabilities are given by a functional form such as a multinomial-logit model, we propose an estimation heuristic that exploits the specification of the functional form, the variety of the offer sets in a typical RM setting, and qualitative knowledge of arrival rates. Finally we perform simulations to show that the estimator is very promising in obtaining unbiased estimates of population size and the model parameters.