39 resultados para constrained neural networks


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main goal of our study was to see whether an artificial olfactory system can be used as a nondestructive instrument to measure fruit maturity. In order to make an objective comparison, samples measured with our electronic nose prototype were later characterized using fruit quality techniques. The cultivars chosen for the study were peaches, nectarines, apples, and pears. With peaches and nectarines, a PCA analysis on the electronic nose measurements helped to guess optimal harvest dates that were in good agreement with the ones obtained with fruit quality techniques. A good correlation between sensor signals and some fruit quality indicators was also found. With pears, the study addressed the possibility of classifying samples regarding their ripeness state after different cold storage and shelf-life periods. A PCA analysis showed good separation between samples measured after a shelf-life period of seven days and samples with four or less days. Finally, the electronic nose monitored the shelf-life ripening of apples. A good correlation between electronic nose signals and firmness, starch index, and acidity parameters was found. These results prove that electronic noses have the potential of becoming a reliable instrument to assess fruit ripeness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A través de la manipulació de les emocions és relativament senzill alterar la percepció que hom té de la realitat

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, the fusion of a stochastic metaheuristic as Simulated Annealing (SA) with classical criteria for convergence of Blind Separation of Sources (BSS), is shown. Although the topic of BSS, by means of various techniques, including ICA, PCA, and neural networks, has been amply discussed in the literature, to date the possibility of using simulated annealing algorithms has not been seriously explored. From experimental results, this paper demonstrates the possible benefits offered by SA in combination with high order statistical and mutual information criteria for BSS, such as robustness against local minima and a high degree of flexibility in the energy function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To develop systems in order to detect Alzheimer’s disease we want to use EEG signals. Available database is raw, so the first step must be to clean signals properly. We propose a new way of ICA cleaning on a database recorded from patients with Alzheimer's disease (mildAD, early stage). Two researchers visually inspected all the signals (EEG channels), and each recording's least corrupted (artefact-clean) continuous 20 sec interval were chosen for the analysis. Each trial was then decomposed using ICA. Sources were ordered using a kurtosis measure, and the researchers cleared up to seven sources per trial corresponding to artefacts (eye movements, EMG corruption, EKG, etc), using three criteria: (i) Isolated source on the scalp (only a few electrodes contribute to the source), (ii) Abnormal wave shape (drifts, eye blinks, sharp waves, etc.), (iii) Source of abnormally high amplitude ( �100 �V). We then evaluated the outcome of this cleaning by means of the classification of patients using multilayer perceptron neural networks. Results are very satisfactory and performance is increased from 50.9% to 73.1% correctly classified data using ICA cleaning procedure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, a wrapper approach was applied to objectively select the most important variables related to two different anaerobic digestion imbalances, acidogenic states and foaming. This feature selection method, implemented in artificial neural networks (ANN), was performed using input and output data from a fully instrumented pilot plant (1 m 3 upflow fixed bed digester). Results for acidogenic states showed that pH, volatile fatty acids, and inflow rate were the most relevant variables. Results for foaming showed that inflow rate and total organic carbon were among the relevant variables, both of which were related to the feed loading of the digester. Because there is not a complete agreement on the causes of foaming, these results highlight the role of digester feeding patterns in the development of foaming

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The analysis of the activity of neuronal cultures is considered to be a good proxy of the functional connectivity of in vivo neuronal tissues. Thus, the functional complex network inferred from activity patterns is a promising way to unravel the interplay between structure and functionality of neuronal systems. Here, we monitor the spontaneous self-sustained dynamics in neuronal cultures formed by interconnected aggregates of neurons (clusters). Dynamics is characterized by the fast activation of groups of clusters in sequences termed bursts. The analysis of the time delays between clusters' activations within the bursts allows the reconstruction of the directed functional connectivity of the network. We propose a method to statistically infer this connectivity and analyze the resulting properties of the associated complex networks. Surprisingly enough, in contrast to what has been reported for many biological networks, the clustered neuronal cultures present assortative mixing connectivity values, meaning that there is a preference for clusters to link to other clusters that share similar functional connectivity, as well as a rich-club core, which shapes a"connectivity backbone" in the network. These results point out that the grouping of neurons and the assortative connectivity between clusters are intrinsic survival mechanisms of the culture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

tThis paper deals with the potential and limitations of using voice and speech processing to detect Obstruc-tive Sleep Apnea (OSA). An extensive body of voice features has been extracted from patients whopresent various degrees of OSA as well as healthy controls. We analyse the utility of a reduced set offeatures for detecting OSA. We apply various feature selection and reduction schemes (statistical rank-ing, Genetic Algorithms, PCA, LDA) and compare various classifiers (Bayesian Classifiers, kNN, SupportVector Machines, neural networks, Adaboost). S-fold crossvalidation performed on 248 subjects showsthat in the extreme cases (that is, 127 controls and 121 patients with severe OSA) voice alone is able todiscriminate quite well between the presence and absence of OSA. However, this is not the case withmild OSA and healthy snoring patients where voice seems to play a secondary role. We found that thebest classification schemes are achieved using a Genetic Algorithm for feature selection/reduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La interacció home-màquina per mitjà de la veu cobreix moltes àrees d’investigació. Es destaquen entre altres, el reconeixement de la parla, la síntesis i identificació de discurs, la verificació i identificació de locutor i l’activació per veu (ordres) de sistemes robòtics. Reconèixer la parla és natural i simple per a les persones, però és un treball complex per a les màquines, pel qual existeixen diverses metodologies i tècniques, entre elles les Xarxes Neuronals. L’objectiu d’aquest treball és desenvolupar una eina en Matlab per al reconeixement i identificació de paraules pronunciades per un locutor, entre un conjunt de paraules possibles, i amb una bona fiabilitat dins d’uns marges preestablerts. El sistema és independent del locutor que pronuncia la paraula, és a dir, aquest locutor no haurà intervingut en el procés d’entrenament del sistema. S’ha dissenyat una interfície que permet l’adquisició del senyal de veu i el seu processament mitjançant xarxes neuronals i altres tècniques. Adaptant una part de control al sistema, es podria utilitzar per donar ordres a un robot com l’Alfa6Uvic o qualsevol altre dispositiu.