37 resultados para chemical reaction system
Resumo:
We report on the study of nonequilibrium ordering in the reaction-diffusion lattice gas. It is a kinetic model that relaxes towards steady states under the simultaneous competition of a thermally activated creation-annihilation $(reaction$) process at temperature T, and a diffusion process driven by a heat bath at temperature T?T. The phase diagram as one varies T and T, the system dimension d, the relative priori probabilities for the two processes, and their dynamical rates is investigated. We compare mean-field theory, new Monte Carlo data, and known exact results for some limiting cases. In particular, no evidence of Landau critical behavior is found numerically when d=2 for Metropolis rates but Onsager critical points and a variety of first-order phase transitions.
Resumo:
The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution or in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continuous internal flow. In such conditions, the system can evolve, for certain reaction and system parameters, toward a chiral stationary state; that is, the system is able to reach a bifurcation point leading to SMSB. Numerical simulations in which reasonable chemical parameters have been used suggest that an adequate scenario for such a SMSB would be that of abyssal hydrothermal vents, by virtue of the typical temperature gradients found there and the role of inorganic solids mediating chemical reactions in an enzyme-like role.
Resumo:
The computer simulation of reaction dynamics has nowadays reached a remarkable degree of accuracy. Triatomic elementary reactions are rigorously studied with great detail on a straightforward basis using a considerable variety of Quantum Dynamics computational tools available to the scientific community. In our contribution we compare the performance of two quantum scattering codes in the computation of reaction cross sections of a triatomic benchmark reaction such as the gas phase reaction Ne + H2+ %12. NeH++ H. The computational codes are selected as representative of time-dependent (Real Wave Packet [ ]) and time-independent (ABC [ ]) methodologies. The main conclusion to be drawn from our study is that both strategies are, to a great extent, not competing but rather complementary. While time-dependent calculations advantages with respect to the energy range that can be covered in a single simulation, time-independent approaches offer much more detailed information from each single energy calculation. Further details such as the calculation of reactivity at very low collision energies or the computational effort related to account for the Coriolis couplings are analyzed in this paper.
Resumo:
We present a detailed evaluation of the seasonal performance of the Community Multiscale Air Quality (CMAQ) modelling system and the PSU/NCAR meteorological model coupled to a new Numerical Emission Model for Air Quality (MNEQA). The combined system simulates air quality at a fine resolution (3 km as horizontal resolution and 1 h as temporal resolution) in north-eastern Spain, where problems of ozone pollution are frequent. An extensive database compiled over two periods, from May to September 2009 and 2010, is used to evaluate meteorological simulations and chemical outputs. Our results indicate that the model accurately reproduces hourly and 1-h and 8-h maximum ozone surface concentrations measured at the air quality stations, as statistical values fall within the EPA and EU recommendations. However, to further improve forecast accuracy, three simple bias-adjustment techniques mean subtraction (MS), ratio adjustment (RA), and hybrid forecast (HF) based on 10 days of available comparisons are applied. The results show that the MS technique performed better than RA or HF, although all the bias-adjustment techniques significantly reduce the systematic errors in ozone forecasts.
Resumo:
A novel unsymmetric dinucleating ligand (LN3N4) combining a tridentate and a tetradentate binding sites linked through a m-xylyl spacer was synthesized as ligand scaffold for preparing homo- and dimetallic complexes, where the two metal ions are bound in two different coordination environments. Site-selective binding of different metal ions is demonstrated. LN3N4 is able to discriminate between CuI and a complementary metal (M′ = CuI, ZnII, FeII, CuII, or GaIII) so that pure heterodimetallic complexes with a general formula [CuIM′(LN3N4)]n+ are synthesized. Reaction of the dicopper(I) complex [CuI 2(LN3N4)]2+ with O2 leads to the formation of two different copper-dioxygen (Cu2O2) intermolecular species (O and TP) between two copper atoms located in the same site from different complex molecules. Taking advantage of this feature, reaction of the heterodimetallic complexes [CuM′(LN3N4)]n+ with O2 at low temperature is used as a tool to determine the final position of the CuI center in the system because only one of the two Cu2O2 species is formed
Resumo:
The indole ring is one of the most common features in natural products and small molecules with important bioactivity. Larock reported a new methodology for the synthesis of the indole ring system based on the palladium-catalyzed heteroannulation of 2-iodoaniline and substituted alkyne moieties. This procedure was subsequently extended to the preparation of other nitrogen- and oxygen- containing heterocycles. This is the process of choice for the synthesis of a large number of heterocyclic derivatives, as it provides outstanding regioselectivity and good to excellent yields.
Resumo:
The indole ring is one of the most common features in natural products and small molecules with important bioactivity. Larock reported a new methodology for the synthesis of the indole ring system based on the palladium-catalyzed heteroannulation of 2-iodoaniline and substituted alkyne moieties. This procedure was subsequently extended to the preparation of other nitrogen- and oxygen- containing heterocycles. This is the process of choice for the synthesis of a large number of heterocyclic derivatives, as it provides outstanding regioselectivity and good to excellent yields.