41 resultados para attendance prediction
Resumo:
Near-infrared spectroscopy (NIRS) was used to analyse the crude protein content of dried and milled samples of wheat and to discriminate samples according to their stage of growth. A calibration set of 72 samples from three growth stages of wheat (tillering, heading and harvest) and a validation set of 28 samples was collected for this purpose. Principal components analysis (PCA) of the calibration set discriminated groups of samples according to the growth stage of the wheat. Based on these differences, a classification procedure (SIMCA) showed a very accurate classification of the validation set samples : all of them were successfully classified in each group using this procedure when both the residual and the leverage were used in the classification criteria. Looking only at the residuals all the samples were also correctly classified except one of tillering stage that was assigned to both tillering and heading stages. Finally, the determination of the crude protein content of these samples was considered in two ways: building up a global model for all the growth stages, and building up local models for each stage, separately. The best prediction results for crude protein were obtained using a global model for samples in the two first growth stages (tillering and heading), and using a local model for the harvest stage samples.
Resumo:
Regression equations predicting dissectable muscle weight in rabbits from external measurements were presented. Bone weight and weight of muscle groups were also carcass predicted. Predictive capacity of external measurements, retail cuts and muscle groups on total muscle, percent muscle, total bone and muscle to bone ratio were studied separately. Measurements on dissected retail cuts should be included in ordcr to obtain good equations for prediction of percent muscle in the carcass. Equations for predicting the muscle to bone ratio using external mcasurcments and data from the dissection of one hind leg were suggested. The equations had generally high coefficients of determination. The coefficient of determination for prediction of dissectable muscle was 0.91, and for percent muscle in the carcass 0.79.
Resumo:
Abstract Objective: We aimed to determine the validity of two risk scores for patients with non-muscle invasive bladder cancer in different European settings, in patients with primary tumours. Methods: We included 1,892 patients with primary stage Ta or T1 non-muscle invasive bladder cancer who underwent a transurethral resection in Spain (n = 973), the Netherlands (n = 639), or Denmark (n = 280). We evaluated recurrence-free survival and progression-free survival according to the European Organisation for Research and Treatment of Cancer (EORTC) and the Spanish Urological Club for Oncological Treatment (CUETO) risk scores for each patient and used the concordance index (c-index) to indicate discriminative ability. Results: The 3 cohorts were comparable according to age and sex, but patients from Denmark had a larger proportion of patients with the high stage and grade at diagnosis (p,0.01). At least one recurrence occurred in 839 (44%) patients and 258 (14%) patients had a progression during a median follow-up of 74 months. Patients from Denmark had the highest 10- year recurrence and progression rates (75% and 24%, respectively), whereas patients from Spain had the lowest rates (34% and 10%, respectively). The EORTC and CUETO risk scores both predicted progression better than recurrence with c-indices ranging from 0.72 to 0.82 while for recurrence, those ranged from 0.55 to 0.61. Conclusion: The EORTC and CUETO risk scores can reasonably predict progression, while prediction of recurrence is more difficult. New prognostic markers are needed to better predict recurrence of tumours in primary non-muscle invasive bladder cancer patients.
Resumo:
The prediction filters are well known models for signal estimation, in communications, control and many others areas. The classical method for deriving linear prediction coding (LPC) filters is often based on the minimization of a mean square error (MSE). Consequently, second order statistics are only required, but the estimation is only optimal if the residue is independent and identically distributed (iid) Gaussian. In this paper, we derive the ML estimate of the prediction filter. Relationships with robust estimation of auto-regressive (AR) processes, with blind deconvolution and with source separation based on mutual information minimization are then detailed. The algorithm, based on the minimization of a high-order statistics criterion, uses on-line estimation of the residue statistics. Experimental results emphasize on the interest of this approach.
Resumo:
The linear prediction coding of speech is based in the assumption that the generation model is autoregresive. In this paper we propose a structure to cope with the nonlinear effects presents in the generation of the speech signal. This structure will consist of two stages, the first one will be a classical linear prediction filter, and the second one will model the residual signal by means of two nonlinearities between a linear filter. The coefficients of this filter are computed by means of a gradient search on the score function. This is done in order to deal with the fact that the probability distribution of the residual signal still is not gaussian. This fact is taken into account when the coefficients are computed by a ML estimate. The algorithm based on the minimization of a high-order statistics criterion, uses on-line estimation of the residue statistics and is based on blind deconvolution of Wiener systems [1]. Improvements in the experimental results with speech signals emphasize on the interest of this approach.
Resumo:
Substantial collective flow is observed in collisions between lead nuclei at Large Hadron Collider (LHC) as evidenced by the azimuthal correlations in the transverse momentum distributions of the produced particles. Our calculations indicate that the global v1-flow, which at RHIC peaked at negative rapidities (named third flow component or antiflow), now at LHC is going to turn toward forward rapidities (to the same side and direction as the projectile residue). Potentially this can provide a sensitive barometer to estimate the pressure and transport properties of the quark-gluon plasma. Our calculations also take into account the initial state center-of-mass rapidity fluctuations, and demonstrate that these are crucial for v1 simulations. In order to better study the transverse momentum flow dependence we suggest a new"symmetrized" vS1(pt) function, and we also propose a new method to disentangle global v1 flow from the contribution generated by the random fluctuations in the initial state. This will enhance the possibilities of studying the collective Global v1 flow both at the STAR Beam Energy Scan program and at LHC.
Resumo:
Pensions together with savings and investments during active life are key elements of retirement planning. Motivation for personal choices about the standard of living, bequest and the replacement ratio of pension with respect to last salary income must be considered. This research contributes to the financial planning by helping to quantify long-term care economic needs. We estimate life expectancy from retirement age onwards. The economic cost of care per unit of service is linked to the expected time of needed care and the intensity of required services. The expected individual cost of long-term care from an onset of dependence is estimated separately for men and women. Assumptions on the mortality of the dependent people compared to the general population are introduced. Parameters defining eligibility for various forms of coverage by the universal public social care of the welfare system are addressed. The impact of the intensity of social services on individual predictions is assessed, and a partial coverage by standard private insurance products is also explored. Data were collected by the Spanish Institute of Statistics in two surveys conducted on the general Spanish population in 1999 and in 2008. Official mortality records and life table trends were used to create realistic scenarios for longevity. We find empirical evidence that the public long-term care system in Spain effectively mitigates the risk of incurring huge lifetime costs. We also find that the most vulnerable categories are citizens with moderate disabilities that do not qualify to obtain public social care support. In the Spanish case, the trends between 1999 and 2008 need to be further explored.
Resumo:
Background: Being physically assaulted is known to increase the risk of the occurrence of post-traumatic stress disorder (PTSD) symptoms but it may also skew judgements about the intentions of other people. The objectives of the study were to assess paranoia and PTSD after an assault and to test whether theory-derived cognitive factors predicted the persistence of these problems. Method: At 4 weeks after hospital attendance due to an assault, 106 people were assessed on multiple symptom measures (including virtual reality) and cognitive factors from models of paranoia and PTSD. The symptom measures were repeated 3 and 6 months later. Results: Factor analysis indicated that paranoia and PTSD were distinct experiences, though positively correlated. At 4 weeks, 33% of participants met diagnostic criteria for PTSD, falling to 16% at follow-up. Of the group at the first assessment, 80% reported that since the assault they were excessively fearful of other people, which over time fell to 66%. Almost all the cognitive factors (including information-processing style during the trauma, mental defeat, qualities of unwanted memories, self-blame, negative thoughts about self, worry, safety behaviours, anomalous internal experiences and cognitive inflexibility) predicted later paranoia and PTSD, but there was little evidence of differential prediction. Conclusions: Paranoia after an assault may be common and distinguishable from PTSD but predicted by a strikingly similar range of factors.
Resumo:
Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations
Resumo:
Experimentally, Ce2O3 films are used to study cerium oxide in its fully or partially reduced state, as present in many applications. We have explored the space of low energy Ce2O3 nanofilms using structure prediction and density functional calculations, yielding more than 30 distinct nanofilm structures. First, our results help to rationalize the roles of thermodynamics and kinetics in the preparation of reduced ceria nanofilms with different bulk crystalline structures (e.g. A-type or bixbyite) depending on the support used. Second, we predict a novel, as yet experimentally unresolved, nanofilm which has a structure that does not correspond to any previously reported bulk A2B3 phase and which has an energetic stability between that of A-type and bixbyite. To assist identification and fabrication of this new Ce2O3 nanofilm we calculate some observable properties and propose supports for its epitaxial growth.
Resumo:
Automobile bodily injury (BI) claims remain unsettled for a long time after the accident. The estimation of an accurate reserve for Reported But Not Settled (RBNS) claims is therefore vital for insurers. In accordance with the recommendation included in the Solvency II project (CEIOPS, 2007) a statistical model is here implemented for RBNS reserve estimation. Lognormality on empirical compensation cost data is observed for different levels of BI severity. The individual claim provision is estimated by allocating the expected mean compensation for the predicted severity of the victim’s injury, for which the upper bound is also computed. The BI severity is predicted by means of a heteroscedastic multiple choice model, because empirical evidence has found that the variability in the latent severity of injured individuals travelling by car is not constant. It is shown that this methodology can improve the accuracy of RBNS reserve estimation at all stages, as compared to the subjective assessment that has traditionally been made by practitioners.