39 resultados para apex predators
Resumo:
Macroinvertebrates associated to reed-beds (Phragmites australis) in six shallow natural water bodies along the 220 km of coast of the Comunidad Valenciana (Spain) were studied. These sites were selected to reflect different trophic states, but also, and due to the natural variability of mediterranean wetlands, they greatly differ in salinity and hydroperiod. To unify the sampling, reed bed was chosen to provide data from a habitat common to all wetlands, including the most eutrophic ones where submerged macrophytes have disappeared due to water turbidity. Individual submerged stems of Phragmites australis were sampled along with the surrounding water. The animal density found refers to the available stem surface area for colonization. Forty-one taxa were recorded in total, finding Chironomidae to be the most important group, quantitatively and qualitatively. In freshwater sites it was observed an increase in macroinvertebrate"s density at higher trophic states. Nevertheless each studied region had a different fauna. The PCA analysis with macroinvertebrate groups distinguished three types of environment: freshwaters (characterized by swimming insect larvae, collectors and predators, oligochaetes and Orthocladiinae), saline waters (characterized by crustaceans and Chironominae) and the spring pool, which shares both taxa. Chironomids were paid special attention for being the most abundant. A DCA analysis based on the relative abundance of Chironomids reveals salinity as the main characteristic responsible for its distribution, but trophic state and hydrological regime were also shown to be important factors.
Resumo:
The Ebro Delta holds a large seabird community, including a common tern (Sterna hirundo) local population of 3,085 pairs in 2000 which breeds scattered in several colonies. At El Canalot colony, 1,178 (1999) and 1,156 pairs (2000) of this species bred distributed in 32 and 38 sub-colonies respectively. These sub-colonies varied in size from 1 to 223 pairs and were placed near the main breeding colonies of yellow-legged gulls (Larus cachinnans) and Audouin´s gulls (L. audouinii), which are potential egg-predators of terns. We studied egg predation during 1999 (6 sub-colonies) and 2000 (27 sub-colonies). Overall, we found that 10.6% of the nests in 1999 and 16.7% in 2000 suffered partial or total egg predation, being total in 81.1% of the predatory events. Predation was significantly higher in small sub-colonies (< 11 pairs): 49.4% in 1999 and 75.5% in 2000. Only attacks from yellow-legged gulls were observed, and defence behaviour of terns was significantly more frequent against this gull species (40.5 hours of observation), suggesting that in most cases the egg predation recorded was due to this species. Probability of egg predation was significantly and negatively correlated with distance to the nearest yellow-legged gull sub-colony, although this relationship was no more significant after adjustment for sub-colony size. On the other hand, distance to the nearest Audouin´s gull sub-colony did not show any effect. Our results suggest that the impact of large gulls (at least yellow-legged gulls) upon smaller seabirds breeding in the area might be important, especially when they are breeding in small sub-colonies. Further studies are needed to analyse the general impact of large gulls upon the breeding populations of other colonial bird species in the area.
Resumo:
The loss of species during the Holocene was, dramatically more important on islands than on continents. Seabirds from islands are very vulnerable to human-induced alterations such as habitat destruction, hunting and exotic predators. For example, in the genus Puffinus (family Procellariidae) the extinction of at least five species has been recorded during the Holocene, two of them coming from the Canary Islands.
Resumo:
Trophic ecology and movements are critical issues for understanding the role of marine predators in food webs and for facing the challenges of their conservation. Seabird foraging ecology has been increasingly studied, but small elusive species, such as those forming the"little shearwater" complex, remain poorly known. We present the first study on the movements and feeding ecology of the Barolo shearwater Puffinus baroli baroli in a colony from the Azores archipelago (NE Atlantic), combining global location-sensing units, stable isotope analyses of feathers (δ13C and δ15N), stomach flushings and data from maximum depth gauges. During the chick-rearing period, parents visited their nests most nights, foraged mainly south of the colony and fed at lower trophic levels than during the non-breeding period. Squid was the most diverse prey (6 families and at least 10 different taxa), but species composition varied considerably between years. Two squid families, Onychoteuthidae and Argonautidae, and the fish family Phycidae accounted for 82.3% of ingested prey by number. On average, maximum dive depths per foraging trip reached 14.8 m (range: 7.9 to 23.1 m). After the breeding period, birds dispersed offshore in all directions and up to 2500 km from the breeding colony, and fed at higher trophic levels. Overall, our results indicate that the Barolo shearwater is a non-migratory shearwater feeding at the lowest trophic level among Macaronesian seabirds, showing both diurnal and nocturnal activity and feeding deeper in the water column, principally on small schooling squid and fish. These traits contrast with those of 3 other Azorean Procellariiformes (Cory"s shearwater Calonectris diomedea, the Madeiran storm-petrel Oceanodroma castro and Monteiro"s storm-petrel O. monteiroi), indicating ecological segregation within the Azorean seabird community.
Resumo:
The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs.
Resumo:
Despite increasing interest in long-distance migration, the wintering areas, migration corridors, and population mix in winter quarters of most pelagic marine predators are unknown. Here, we present the first study tracking migration movements of shearwaters through the non-breeding period. We used geolocators (global location sensing [GLS] units based on ambient light levels) to track 22 Cory's shearwaters (Calonectris diomedea) breeding in three different areas. Most birds wintered in one or more of three relatively small areas, all clearly associated with major coastal upwelling systems of the tropical and south Atlantic. Trans-equatorial movements were dominated by prevailing trade winds and westerlies, while calm, oligotrophic areas were avoided. Breeding populations clearly differed in their preference amongst the three major wintering areas, but showed substantial mixing. This illustrates the exceptional value of GLS, not only for determining and describing the influence of oceanographic features on migration patterns, but also for assessing population mix in winter quarters. This knowledge is essential to understanding the impacts of population-level threats, such as longlining, offshore windfarms, and oil spills on multiple breeding sites, and will be critical in devising conservation policies that guarantee the sustainable exploitation of the oceans.
Resumo:
Understanding how marine predators interact is a scientific challenge. In marine ecosystems, segregation in feeding habits has been largely described as a common mechanism to allow the coexistence of several competing marine predators. However, little is known about the feeding ecology of most species of chondrichthyans, which play a pivotal role in the structure of marine food webs worldwide. In this study, we examined the trophic ecology of 3 relatively abundant chondrichthyans coexisting in the Mediterranean Sea: the blackmouth catshark Galeus melastomus , the velvet belly lanternshark Etmopterus spinax and the rabbit fish Chimaera monstrosa. To examine their trophic ecology and interspecific differences in food habits, we combined the analysis of stomach content and stable isotopes. Our results highlighted a trophic segregation between C. monstrosa and the other 2 species. G. melastomus showed a diet composed mainly of cephalopods, while E. spinax preyed mainly on shrimps and C. monstrosa on crabs. Interspecific differences in the trophic niche were likely due to different feeding capabilities and body size. Each species showed different isotopic niche space and trophic level. Specifically, C. monstrosa showed a higher trophic level than E. spinax and G. melastomus. The high trophic levels of the 3 species highlighted their important role as predators in the marine food web. Our results illustrate the utility of using complementary approaches that provide information about the feeding behaviour at short (stomach content) and long-term scales (stable isotopes), which could allow more efficient monitoring of marine food-web changes in the study area.
Resumo:
We experimentally examined the predator-prey relationships between juvenile spotted sorubim Pseudoplastystoma corruscans and young-of-the-year invasive and native fish species of the Paraná River basin, Brazil. Three invasive (peacock bass Cichla piquiti, Nile tilapia Oreochromis niloticus, and channel catfish Ictalurus punctatus) and two native (yellowtail tetra Astyanax altiparanae and streaked prochilod Prochilodus lineatus) fish species were offered as prey to P. corruscans in 300 L aquaria with three habitat complexity treatments (0%, 50% and 100% structure-covered). Prey survival was variable through time and among species (C. piquiti < O. niloticus < A. altiparanae < P. lineatus < I. punctatus), depending largely on species-specific prey behavior but also on prey size and morphological defenses. Habitat complexity did not directly affect P. corruscans piscivory but some prey species changed their microhabitat use and shoaling behavior among habitat treatments in predator’s presence. Pseudoplatystoma corruscans preyed preferentially on smaller individuals of those invasive species with weak morphological defensive features that persisted in a non-shoaling behavior. Overall, our results contrast with those in a companion experiment using a diurnal predator, suggesting that nocturnal piscivores preferentially prey on different (rather diurnal) fish species and are less affected by habitat complexity. Our findings suggest that recovering the native populations of P. corruscans might help controling some fish species introduced to the Paraná River basin, particularly C. piquiti and O. niloticus, whose parental care is expected to be weak or null at night
Resumo:
Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes