41 resultados para adhesive disk
Resumo:
Objectives: To evaluate the shear bond strength and site of failure of brackets bonded to dry and wet enamel. Study design: 50 teeth were divided into ten groups of 5 teeth each (10 surfaces). In half the groups enamel was kept dry before bonding, and in the other half distilled water was applied to wet the surface after etching. The following groups were established: 1)Acid/Transbond-XT (dry/wet) XT; 2) Transbond Plus Self Etching Primer (TSEP)/Transbond-XT paste (dry/wet); 3) Concise (dry), Transbond MIP/Concise (wet), 4) FujiOrtho-LC (dry/wet); 5) SmartBond (dry/wet). Brackets were bonded to both buccal and lingual surfaces. Specimens were stored in distilled water (24 hours at 37ºC) and thermocycled. Brackets were debonded using a Universal testing machine (cross-head speed 1 mm/min). Failure sites were classified using a stereomicroscope. Results: No significant differences in bond strength were detected between the adhesives under wet and dry conditions except for Smart- Bond, whose bond strength was significantly lower under dry conditions. For all the adhesives most bond failures were of mixed site location except for Smartbond, which failed at the adhesive-bracket interface. Conclusions: Under wet conditions the bonding capacity of the adhesives tested was similar than under dry conditions, with the exception of SmartBond which improved under wet conditions
Resumo:
Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the ~80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (also known as HD 215227), although that was based on a single radial velocity curve of the Be star, a mistaken spectral classification and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of the Be star. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5-B2 III star), reveals a black hole of 3.8 to 6.9 solar masses orbiting MWC 656, the candidate counterpart of the gamma-ray source AGL J2241+4454. The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 x 10-7 times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect by conventional X-ray surveys.
Resumo:
By modifying a domain first suggested by Ruth Goodman in 1935 and by exploiting the explicit solution by Fedorov of the Polyá-Chebotarev problem in the case of four symmetrically placed points, an improved upper bound for the univalent Bloch-Landau constant is obtained. The domain that leads to this improved bound takes the form of a disk from which some arcs are removed in such a way that the resulting simply connected domain is harmonically symmetric in each arc with respect to the origin. The existence of domains of this type is established, using techniques from conformal welding, and some general properties of harmonically symmetric arcs in this setting are established.
Resumo:
The microquasar 1E 1740.7-2942 is a source located in the direction of the Galactic Center. It has been detected at X-rays, soft gamma-rays, and in the radio band, showing an extended radio component in the form of a double-sided jet. Although no optical counterpart has been found so far for 1E 1740.7-2942, its X-ray activity strongly points to a galactic nature. Aims.We aim to improve our understanding of the hard X-ray and gamma-ray production in the system, exploring whether the jet can emit significantly at high energies under the light of the present knowledge. Methods.We have modeled the source emission, from radio to gamma-rays, with a cold-matter dominated jet model. INTEGRAL data combined with radio and RXTE data, as well as EGRET and HESS upper-limits, are used to compare the computed and the observed spectra. Results.From our modeling, we find out that jet emission cannot explain the high fluxes observed at hard X-rays without violating at the same time the constraints from the radio data, favoring the corona origin of the hard X-rays. Also, 1E 1740.7-2942 might be detected by GLAST or AGILE at GeV energies, and by HESS and HESS-II beyond 100 GeV, with the spectral shape likely affected by photon-photon absorption in the disk and corona photon fields.
Resumo:
Las barreras térmicas poseen unas propiedades mecánicas y tribológicas limitadas. Los tratamientos térmicos de sintetizado pueden utilizarse como una posible solución para su mejora. En el presente trabajo se evalúa la evolución de diversas propiedades tribológicas y mecánicas, a diferentes tiempos de sinterización, a temperatura de 1.000 °C. Se observa que el sintetizado produce un aumento de la resistencia al desgaste, de la dureza y del módulo de Young. A partir de los ensayos ball-on-disk, realizados utilizando un par friccionante de ZrO2 y de acero, se han estudiado los mecanismos de desgaste dominantes para cada uno de los pares friccionantes. Se ha observado que la delaminación entre partículas y la fractura frágil durante el proceso de desgaste son los mecanismos principales que controlan el proceso. Los caminos de desgaste estudiados mediante microscopía electrónica de barrido (SEM) e interferometría de barrido de luz blanca (SWLI) han permitido cuantificar el desgaste en cada uno de los casos. A fin de poder estudiar los recubrimientos de ZrO2 mediante SEM y SWLI ha sido necesario realizar una metalización con oro para así aumentar la conductividad eléctrica y reflectividad de las muestras.
Resumo:
The recent production of synthetic magnetic fields acting on electroneutral particles, such as atoms or photons, has boosted interest in the quantum Hall physics of bosons. Adding pseudospin 1/2 to the bosons greatly enriches the scenario, as it allows them to form an interacting integer quantum Hall (IQH) phase with no fermionic counterpart. Here we show that, for a small two-component Bose gas on a disk, the complete strongly correlated regime, extending from the integer phase at filling factor ν = 2 to the Halperin phase at filling factor ν = 2 / 3, is well described by composite fermionization of the bosons. Moreover we study the edge excitations of the IQH state, which, in agreement with expectations from topological field theory, are found to consist of forward-moving charge excitations and backward-moving spin excitations. Finally, we demonstrate how pair-correlation functions allow one to experimentally distinguish the IQH state from competing states, such as non-Abelian spin singlet (NASS) states.
Resumo:
Population studies of unidentified EGRET sources suggest that there exist at least three different populations of galactic gamma-ray sources. One of these populations is formed by young objects distributed along the galactic plane with a strong concentration toward the inner spiral arms of the Galaxy. Variability, spectral and correlation analysis indicate that this population is not homogeneous. In particular, there is a subgroup of sources that display clear variability in their gamma-ray fluxes on timescales from days to months. Following the proposal by Kaufman Bernad\'o et al. (2002), we suggest that this group of sources might be high-mass microquasars, i.e. accreting black holes or neutron stars with relativistic jets and early-type stellar companions. We present detailed inhomogeneous models for the gamma-ray emission of these systems that include both external and synchrotron self-Compton interactions. We have included effects of interactions between the jet and all external photon fields to which it is exposed: companion star, accretion disk, and hot corona. We make broadband calculations to predict the spectral energy distribution of these objects from radio up to GeV energies. The results and predictions can be tested by present and future gamma-ray instruments like INTEGRAL, AGILE, and GLAST.
Resumo:
We present a detailed study on the morphology and magnetic properties of Co nanostructures deposited onto oxidized Si substrates by femtosecond pulsed laser deposition. Generally, Co disks of nanometric dimensions are obtained just above the ablation threshold, with a size distribution characterized by an increasingly larger number of disks as their size diminishes, and with a maximum disk size that depends on the laser power density. In Au/Co/Au structures, in-plane magnetic anisotropy is observed in all cases, with no indication of superparamagnetism regardless of the amount of material or the laser power density. Magnetic force microscopy observations show coexistence of single-domain and vortex states for the magnetic domain structure of the disks. Superconducting quantum interference device magnetometry and x-ray magnetic circular dichroism measurements point to saturation magnetization values lower than the bulk, probably due to partial oxidation of the Co resulting from incomplete coverage by the Au capping layer.
Resumo:
We present Very Long Baseline Interferometry (VLBI) observations of the high mass X-ray binary LS I +61˚303, carried out with the European VLBI Network (EVN). Over the 11 hour observing run, performed ~10 days after a radio outburst, the radio source showed a constant flux density, which allowed sensitive imaging of the emission distribution. The structure in the map shows a clear extension to the southeast. Comparing our data with previous VLBI observations we interpret the extension as a collimated radio jet as found in several other X-ray binaries. Assuming that the structure is the result of an expansion that started at the onset of the outburst, we derive an apparent expansion velocity of 0:003 c, which, in the context of Doppler boosting, corresponds to an intrinsic velocity of at least 0:4 c for an ejection close to the line of sight. From the apparent velocity in all available epochs we are able to establish variations in the ejection angle which imply a precessing accretion disk. Finally we point out that LS I +61˚303, like SS 433 and Cygnus X-1, shows evidence for an emission region almostorthogonal to the relativistic jet
Resumo:
We present the results of analyzing H$\alpha$ spectra of the radio emitting X-ray binary LS I+61303. For the first time, the same 26.5 d radio period is clearly detected in the H$\alpha$ emission line. Moreover, the equivalent width and the peak separation of the H$\alpha$ emission line seem also to vary over a time scale of 1600 days. This points towards the $\sim4$ yr modulation, detected in the radio outburst amplitude, being probably a result of variations in the mass loss rate of the Be star and/or density variability in the circumstellar disk. In addition, the dependence of the peak separation from the equivalent width informs us that the LS I+61303 circumstellar disk is among the densest of Be-stars.
Resumo:
Classical and quantum theory of spin waves in the vortex state of a mesoscopic submicron magnetic disk have been developed with account of the finite mass density of the vortex. Oscillations of the vortex core resemble oscillations of a charged string in a potential well in the presence of the magnetic field. A conventional gyrotropic frequency appears as a gap in the spectrum of spin waves of the vortex. The mass of the vortex has been computed, and the result agrees with experimental findings. The finite vortex mass generates a high-frequency branch of spin waves. The effects of an external magnetic field and dissipation have been addressed.