37 resultados para Well-Posed Optimization Problems
Resumo:
We introduce a width parameter that bounds the complexity of classical planning problems and domains, along with a simple but effective blind-search procedure that runs in time that is exponential in the problem width. We show that many benchmark domains have a bounded and small width provided thatgoals are restricted to single atoms, and hence that such problems are provably solvable in low polynomial time. We then focus on the practical value of these ideas over the existing benchmarks which feature conjunctive goals. We show that the blind-search procedure can be used for both serializing the goal into subgoals and for solving the resulting problems, resulting in a ‘blind’ planner that competes well with a best-first search planner guided by state-of-the-art heuristics. In addition, ideas like helpful actions and landmarks can be integrated as well, producing a planner with state-of-the-art performance.
Resumo:
The Feller process is an one-dimensional diffusion process with linear drift and state-dependent diffusion coefficient vanishing at the origin. The process is positive definite and it is this property along with its linear character that have made Feller process a convenient candidate for the modeling of a number of phenomena ranging from single-neuron firing to volatility of financial assets. While general properties of the process have long been well known, less known are properties related to level crossing such as the first-passage and the escape problems. In this work we thoroughly address these questions.
Resumo:
A regularization method based on the non-extensive maximum entropy principle is devised. Special emphasis is given to the q=1/2 case. We show that, when the residual principle is considered as constraint, the q=1/2 generalized distribution of Tsallis yields a regularized solution for bad-conditioned problems. The so devised regularized distribution is endowed with a component which corresponds to the well known regularized solution of Tikhonov (1977).
Resumo:
A method for dealing with monotonicity constraints in optimal control problems is used to generalize some results in the context of monopoly theory, also extending the generalization to a large family of principal-agent programs. Our main conclusion is that many results on diverse economic topics, achieved under assumptions of continuity and piecewise differentiability in connection with the endogenous variables of the problem, still remain valid after replacing such assumptions by two minimal requirements.
Resumo:
N = 1 designs imply repeated registrations of the behaviour of the same experimental unit and the measurements obtained are often few due to time limitations, while they are also likely to be sequentially dependent. The analytical techniques needed to enhance statistical and clinical decision making have to deal with these problems. Different procedures for analysing data from single-case AB designs are discussed, presenting their main features and revising the results reported by previous studies. Randomization tests represent one of the statistical methods that seemed to perform well in terms of controlling false alarm rates. In the experimental part of the study a new simulation approach is used to test the performance of randomization tests and the results suggest that the technique is not always robust against the violation of the independence assumption. Moreover, sensitivity proved to be generally unacceptably low for series lengths equal to 30 and 40. Considering the evidence available, there does not seem to be an optimal technique for single-case data analysis
Resumo:
The Feller process is an one-dimensional diffusion process with linear drift and state-dependent diffusion coefficient vanishing at the origin. The process is positive definite and it is this property along with its linear character that have made Feller process a convenient candidate for the modeling of a number of phenomena ranging from single-neuron firing to volatility of financial assets. While general properties of the process have long been well known, less known are properties related to level crossing such as the first-passage and the escape problems. In this work we thoroughly address these questions.
Resumo:
New economic and enterprise needs have increased the interest and utility of the methods of the grouping process based on the theory of uncertainty. A fuzzy grouping (clustering) process is a key phase of knowledge acquisition and reduction complexity regarding different groups of objects. Here, we considered some elements of the theory of affinities and uncertain pretopology that form a significant support tool for a fuzzy clustering process. A Galois lattice is introduced in order to provide a clearer vision of the results. We made an homogeneous grouping process of the economic regions of Russian Federation and Ukraine. The obtained results gave us a large panorama of a regional economic situation of two countries as well as the key guidelines for the decision-making. The mathematical method is very sensible to any changes the regional economy can have. We gave an alternative method of the grouping process under uncertainty.