70 resultados para Visco-elastic fluid
Resumo:
A screened Rutherford cross section is modified by means of a correction factor to obtain the proper transport cross section computed by partial¿wave analysis. The correction factor is tabulated for electron energies in the range 0¿100 keV and for elements in the range from Z=4 to 82. The modified screened Rutherford cross section is shown to be useful as an approximation for the simulation of plural and multiple scattering. Its performance and limitations are exemplified for electrons scattered in Al and Au.
Resumo:
The radial displacement of a fluid annulus in a rotating circular Hele-Shaw cell has been investigated experimentally. It has been found that the flow depends sensitively on the wetting conditions at the outer interface. Displacements in a prewet cell are well described by Darcy's law in a wide range of experimental parameters, with little influence of capillary effects. In a dry cell, however, a more careful analysis of the interface motion is required; the interplay between a gradual loss of fluid at the inner interface, and the dependence of capillary forces at the outer interface on interfacial velocity and dynamic contact angle, result in a constant velocity for the interfaces. The experimental results in this case correlate in the form of an empirical scaling relation between the capillary number Ca and a dimensionless group, related to the ratio of centrifugal to capillary forces, which spans about three orders of magnitude in both quantities. Finally, the relative thickness of the coating film left by the inner interface, alpha i, is obtained as a function of Ca.
Resumo:
We have studied the interfacial instabilities experienced by a liquid annulus as it moves radially in a circular Hele-Shaw cell rotating with angular velocity Omega. The instability of the leading interface (oil displacing air) is driven by the density difference in the presence of centrifugal forcing, while the instability of the trailing interface (air displacing oil) is driven by the large viscosity contrast. A linear stability analysis shows that the stability of the two interfaces is coupled through the pressure field already at a linear level. We have performed experiments in a dry cell and in a cell coated with a thin fluid layer on each plate, and found that the stability depends substantially on the wetting conditions at the leading interface. Our experimental results of the number of fingers resulting from the instability compare well with the predictions obtained through a numerical integration of the coupled equations derived from a linear stability analysis. Deep in the nonlinear regime we observe the emission of liquid droplets through the formation of thin filaments at the tip of outgrowing fingers.
Resumo:
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.
Resumo:
We study the forced displacement of a fluid-fluid interface in a three-dimensional channel formed by two parallel solid plates. Using a lattice-Boltzmann method, we study situations in which a slip velocity arises from diffusion effects near the contact line. The difference between the slip and channel velocities determines whether the interface advances as a meniscus or a thin film of fluid is left adhered to the plates. We find that this effect is controlled by the capillary and Péclet numbers. We estimate the crossover from a meniscus to a thin film and find good agreement with numerical results. The penetration regime is examined in the steady state. We find that the occupation fraction of the advancing finger relative to the channel thickness is controlled by the capillary number and the viscosity contrast between the fluids. For high viscosity contrast, lattice-Boltzmann results agree with previous results. For zero viscosity contrast, we observe remarkably narrow fingers. The shape of the finger is found to be universal.
Resumo:
Elastic scattering of relativistic electrons and positrons by atoms is considered in the framework of the static field approximation. The scattering field is expressed as a sum of Yukawa terms to allow the use of various approximations. Accurate phase shifts have been computed by combining Bühring¿s power-series method with the WKB and Born approximations. This combined procedure allows the evaluation of differential cross sections for kinetic energies up to several tens of MeV. Numerical results are used to analyze the validity of several approximate methods, namely the first- and second-order Born approximations and the screened Mott formula, which are frequently adopted as the basis of multiple scattering theories and Monte Carlo simulations of electron and positron transport.
Resumo:
Monte Carlo calculations of the isothermal elastic constants of the beta-CuxZn1-x alloy system as a function of the composition have been carried out. We assume the atoms interact via a two-body Morse potential function and use numerical values for the potential parameters evaluated taking into account experimental data. We find a quite good agreement between our results and the expected experimental behavior.
Resumo:
A general formalism is set up to analyze the response of an arbitrary solid elastic body to an arbitrary metric gravitational wave (GW) perturbation, which fully displays the details of the interaction antenna wave. The formalism is applied to the spherical detector, whose sensitivity parameters are thereby scrutinized. A multimode transfer function is defined to study the amplitude sensitivity, and absorption cross sections are calculated for a general metric theory of GW physics. Their scaling properties are shown to be independent of the underlying theory, with interesting consequences for future detector design. The GW incidence direction deconvolution problem is also discussed, always within the context of a general metric theory of the gravitational field.
Resumo:
Spherical gravitational wave (GW) detectors offer a wealth of so far unexplored possibilities to detect gravitational radiation. We find that a sphere can be used as a powerful testbed for any metric theory of gravity, not only general relativity as considered so far, by making use of a deconvolution procedure for all the electric components of the Riemann tensor. We also find that the spheres cross section is large at two frequencies, and advantageous at higher frequencies in the sense that a single antenna constitutes a real xylophone in its own. Proposed GW networks will greatly benefit from this. The main features of a two large sphere observatory are reported.
Resumo:
We present a general class of solutions to Einstein's field equations with two spacelike commuting Killing vectors by assuming the separation of variables of the metric components. The solutions can be interpreted as inhomogeneous cosmological models. We show that the singularity structure of the solutions varies depending on the different particular choices of the parameters and metric functions. There exist solutions with a universal big-bang singularity, solutions with timelike singularities in the Weyl tensor only, solutions with singularities in both the Ricci and the Weyl tensors, and also singularity-free solutions. We prove that the singularity-free solutions have a well-defined cylindrical symmetry and that they are generalizations of other singularity-free solutions obtained recently.
Resumo:
The scalar sector of the effective low-energy six-dimensional Kaluza-Klein theory is seen to represent an anisotropic fluid composed of two perfect fluids if the extra space metric has a Euclidean signature, or a perfect fluid of geometric strings if it has an indefinite signature. The Einstein field equations with such fluids can be explicitly integrated when the four-dimensional space-time has two commuting Killing vectors.
Resumo:
Computer simulations of a colloidal particle suspended in a fluid confined by rigid walls show that, at long times, the velocity correlation function decays with a negative algebraic tail. The exponent depends on the confining geometry, rather than the spatial dimensionality. We can account for the tail by using a simple mode-coupling theory which exploits the fact that the sound wave generated by a moving particle becomes diffusive.
Resumo:
We have shown that the mobility tensor for a particle moving through an arbitrary homogeneous stationary flow satisfies generalized Onsager symmetry relations in which the time-reversal transformation should also be applied to the external forces that keep the system in the stationary state. It is then found that the lift forces, responsible for the motion of the particle in a direction perpendicular to its velocity, have different parity than the drag forces.
Resumo:
Generalized KerrSchild space-times for a perfect-fluid source are investigated. New Petrov type D perfect fluid solutions are obtained starting from conformally flat perfect-fluid metrics.