89 resultados para Underwater robotics
Resumo:
A visual SLAM system has been implemented and optimised for real-time deployment on an AUV equipped with calibrated stereo cameras. The system incorporates a novel approach to landmark description in which landmarks are local sub maps that consist of a cloud of 3D points and their associated SIFT/SURF descriptors. Landmarks are also sparsely distributed which simplifies and accelerates data association and map updates. In addition to landmark-based localisation the system utilises visual odometry to estimate the pose of the vehicle in 6 degrees of freedom by identifying temporal matches between consecutive local sub maps and computing the motion. Both the extended Kalman filter and unscented Kalman filter have been considered for filtering the observations. The output of the filter is also smoothed using the Rauch-Tung-Striebel (RTS) method to obtain a better alignment of the sequence of local sub maps and to deliver a large-scale 3D acquisition of the surveyed area. Synthetic experiments have been performed using a simulation environment in which ray tracing is used to generate synthetic images for the stereo system
Resumo:
This work investigates performance of recent feature-based matching techniques when applied to registration of underwater images. Matching methods are tested versus different contrast enhancing pre-processing of images. As a result of the performed experiments for various dominating in images underwater artifacts and present deformation, the outperforming preprocessing, detection and description methods are proposed
Resumo:
Editorial material
Resumo:
Vehicle operations in underwater environments are often compromised by poor visibility conditions. For instance, the perception range of optical devices is heavily constrained in turbid waters, thus complicating navigation and mapping tasks in environments such as harbors, bays, or rivers. A new generation of high-definition forward-looking sonars providing acoustic imagery at high frame rates has recently emerged as a promising alternative for working under these challenging conditions. However, the characteristics of the sonar data introduce difficulties in image registration, a key step in mosaicing and motion estimation applications. In this work, we propose the use of a Fourier-based registration technique capable of handling the low resolution, noise, and artifacts associated with sonar image formation. When compared to a state-of-the art region-based technique, our approach shows superior performance in the alignment of both consecutive and nonconsecutive views as well as higher robustness in featureless environments. The method is used to compute pose constraints between sonar frames that, integrated inside a global alignment framework, enable the rendering of consistent acoustic mosaics with high detail and increased resolution. An extensive experimental section is reported showing results in relevant field applications, such as ship hull inspection and harbor mapping
Resumo:
Robotic platforms have advanced greatly in terms of their remote sensing capabilities, including obtaining optical information using cameras. Alongside these advances, visual mapping has become a very active research area, which facilitates the mapping of areas inaccessible to humans. This requires the efficient processing of data to increase the final mosaic quality and computational efficiency. In this paper, we propose an efficient image mosaicing algorithm for large area visual mapping in underwater environments using multiple underwater robots. Our method identifies overlapping image pairs in the trajectories carried out by the different robots during the topology estimation process, being this a cornerstone for efficiently mapping large areas of the seafloor. We present comparative results based on challenging real underwater datasets, which simulated multi-robot mapping
Resumo:
Report for the scientific sojourn at the Swiss Federal Institute of Technology Zurich, Switzerland, between September and December 2007. In order to make robots useful assistants for our everyday life, the ability to learn and recognize objects is of essential importance. However, object recognition in real scenes is one of the most challenging problems in computer vision, as it is necessary to deal with difficulties. Furthermore, in mobile robotics a new challenge is added to the list: computational complexity. In a dynamic world, information about the objects in the scene can become obsolete before it is ready to be used if the detection algorithm is not fast enough. Two recent object recognition techniques have achieved notable results: the constellation approach proposed by Lowe and the bag of words approach proposed by Nistér and Stewénius. The Lowe constellation approach is the one currently being used in the robot localization project of the COGNIRON project. This report is divided in two main sections. The first section is devoted to briefly review the currently used object recognition system, the Lowe approach, and bring to light the drawbacks found for object recognition in the context of indoor mobile robot navigation. Additionally the proposed improvements for the algorithm are described. In the second section the alternative bag of words method is reviewed, as well as several experiments conducted to evaluate its performance with our own object databases. Furthermore, some modifications to the original algorithm to make it suitable for object detection in unsegmented images are proposed.
Resumo:
La adaptación del reconocimiento de objetos sobre la robótica móvil requiere un enfoque y nuevas aplicaciones que optimicen el entrenamiento de los robots para obtener resultados satisfactorios. Es conocido que el proceso de entrenamiento es largo y tedioso, donde la intervención humana es absolutamente necesaria para supervisar el comportamiento del robot y la dirección hacia los objetivos. Es por esta razón que se ha desarrollado una herramienta que reduce notablemente el esfuerzo humano que se debe hacer para esta supervisión, automatizando el proceso necesario para obtener una evaluación de resultados, y minimizando el tiempo que se malgasta debido a errores humanos o falta de infraestructuras.
Resumo:
Els eixams de robots distribuïts representen tot un món de possibilitats al camp de la microrobòtica, però existeixen pocs estudis que n'analitzin els comportaments socials i les interaccions entre robots autònoms distribuïts. Aquests comportaments han de permetre assolir de la manera més efectiva possible un bon resultat. Prenent com a base l'objectiu esmentat, aquest treball detalla diferents polítiques de cerca i de reconfiguració dels robots i estudia els seus comportaments per tal de determinar quins d'ells són més útils per solucionar un problema concret amb les plagues d'erugues i corcs als camps de cigroneres.
Resumo:
La asignatura de libre elección en la que se realizó la experiencia que se indica pretende ser un trampolín de iniciación para aquellos alumnos de la Universidad Europea de Madrid que tengan inquietud por descubrir el mundo de la robótica. Con una clase de alumnos procedentes de muchas titulaciones distintas, Licenciado en Odontología, Ingeniero de Caminos, Canales y Puertos, Ingeniero Industrial, Ingeniero Informático, Ingeniero en Telecomunicaciones, Técnicos en Obras Públicas y alumnos internacionales, el reto de hacer de la asignatura algo interesante para ellos implicaba saber adaptarse a distintos niveles tanto disciplinar (varias carreras) como académico (los alumnos eran tanto de los primeros cursos como de los últimos). Basándose en el uso del portafolio y el aprendizaje basado en problemas se fueron inculcando los conocimientos básicos necesarios para desarrollar lo que sería el final de la asignatura. Este objetivo final es el que hizo que los alumnos vieran de cerca la labor de un investigador y un grupo de trabajo multidisciplinar. El reto consistió en que debían hacer una solicitud 'ficticia' de un proyecto PROFIT. Los PROFIT constituyen programas de ayuda y fomento a la investigación técnica convocados por el Ministeriode Industria, Turismo y Comercio. Las plantillas son accesibles desde Internet y de esta forma los alumnos pudieron realizar una memoria clara y precisa de sus proyectos. Además, como elemento final de evaluación se invitó a dos profesores expertos en robótica de otra universidad al día de la presentación en el que los alumnos entregaban la memoria y defendían sus trabajos. Tres profesores en total, dos de otra universidad y el profesor de la asignatura asistieron a su defensa y pusieron de manera independiente los trabajos en orden según sus preferencias, al ser 5 grupos la nota debía ponerse entre 10, 9, 8, 7 y 6. La media de la decisión de los tres profesores configuró la nota final.
Resumo:
En aquest Projecte de Millora de la Qualitat Docent es descriu el disseny, la construcció i la utilització d’un robot mòbil com a eina docent en titulacions d’Enginyeria. El robot mòbil té com a element de control un PC portàtil convencional per tal de facilitar el procés d’aprenentatge de l’alumnat estigui centrat en l’objectiu de les pràctiques i no en el funcionament i control del robot. A més a més, el robot disposa d’un elevat nombre de sensors i actuadors per tal d’oferir un elevat grau d’interdisciplinaritat.
Estudi de comportaments socials d'aixams robòtics amb aplicació a la neteja d'espais no estructurats
Resumo:
La intel·ligència d’eixams és una branca de la intel·ligència artificial que està agafant molta força en els últims temps, especialment en el camp de la robòtica. En aquest projecte estudiarem el comportament social sorgit de les interaccions entre un nombre determinat de robots autònoms en el camp de la neteja de grans superfícies. Un cop triat un escenari i un robot que s’ajustin als requeriments del projecte, realitzarem una sèrie de simulacions a partir de diferents polítiques de cerca que ens permetran avaluar el comportament dels robots per unes condicions inicials de distribució dels robots i zones a netejar. A partir dels resultats obtinguts serem capaços de determinar quina configuració genera millors resultats.
Resumo:
L'objectiu d'aquest pràcticum és treballar amb una eina d'edició i catalogació remota de vídeos accessible via internet. L'eina ha estat desenvolupada per l'empresa Vision Robotics. La memòria reflecteix les experiències viscudes a través del treball amb aquesta eina i analitza les possibilitats de millora, les potencialitats de l'eina a més d'afegir unes reflexions finals de l'eina en general.
Resumo:
Proposes a behavior-based scheme for high-level control of autonomous underwater vehicles (AUVs). Two main characteristics can be highlighted in the control scheme. Behavior coordination is done through a hybrid methodology, which takes in advantages of the robustness and modularity in competitive approaches, as well as optimized trajectories
Resumo:
This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed