41 resultados para Tumor Suppression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleoside transporters (NTs) mediate the uptake of nucleosides and nucleobases across the plasma membrane, mostly for salvage purposes. The canonical NTs belong to two gene families, SLC29 and SLC28. The former encode equilibrative nucleoside transporter proteins (ENTs), which mediate the facilitative diffusion of natural nucleosides with broad selectivity, whereas the latter encode concentrative nucleoside transporters (CNTs), which are sodium-coupled and show high affinity for substrates with variable selectivity. These proteins are expressed in most cell types, exhibiting apparent functional redundancy. This might indicate that CNTs play specific roles in the physiology of the cell beyond nucleoside salvage. Here, we addressed this possibility using adenoviral vectors to restore tumor cell expression of hCNT1 or a polymorphic variant (hCNT1S546P) lacking nucleoside translocation ability. We found that hCNT1 restoration in pancreatic cancer cells significantly altered cell-cycle progression and phosphorylation status of key signal-transducing kinases, promoted poly-(ADP ribose) polymerase hyperactivation and cell death, and reduced tumor growth and cell migration. Importantly, the translocation-defective transporter triggered these same effects on cell physiology. These data predict a novel and totally unexpected biological role for the nucleoside transporter protein hCNT1 that appears to be independent of its role as mediator of nucleoside uptake by cells, thereby suggesting a transceptor function. Cell Death & Disease Anastasis Stephanou Receiving Editor Cell Death & Disease 19th Apr 2013 Dr Perez-Torras Av/ Diagonal 643. Edif. Prevosti, Pl -1 Barcelona 08028 Spain RE: Manuscript CDDIS-13-0136R, 'CDDIS-13-0136R' Dear Dr Perez-Torras, It is a pleasure to inform you that your manuscript has been evaluated at the editorial level and has now been officially accepted for publication in Cell Death & Disease, pending you meet the following editorial requirements: 1) the list of the abbreviations is missing please include Could you send us the revised text as word file via e-mail and we will proceed and transfer the paper onto our typesetters. Please download, print, sign, and return the Licence to Publish Form using the link below. This must be returned via FAX to ++ 39 06 7259 6977 before your manuscript can be published:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adherence to aMediterranean diet (MD) is associated with a reduced risk of coronary heart disease. However, themolecular mechanisms involved are not fully understood. The aim of this studywas to compare the effects of 2MD with those of a lowfat- diet (LFD) on circulating inflammatory biomarkers related to atherogenesis. A total of 516 participants included in the PreventionwithMediterraneanDiet Studywere randomized into 3 intervention groups [MD supplementedwith virgin olive oil (MD-VOO); MD supplemented with mixed nuts (MD-Nuts); and LFD]. At baseline and after 1 y, participants completed FFQ and adherence to MD questionnaires, and plasma concentrations of inflammatory markers including intercellular adhesion molecule-1(ICAM-1), IL-6, and 2 TNF receptors (TNFR60 and TNFR80) were measured by ELISA. At 1 y, the MD groups had lower plasma concentrations of IL-6, TNFR60, and TNFR80 (P , 0.05), whereas ICAM-1, TNFR60, and TNFR80 concentrations increased in the LFD group (P , 0.002). Due to between-group differences, participants in the 2 MD groups had lower plasma concentrations of ICAM-1, IL-6, TNFR60, and TNFR80 compared to those in the LFD group (P # 0.028). When participants were categorized in tertiles of 1-y changes in the consumption of selected foods, those in the highest tertile of virgin olive oil (VOO) and vegetable consumption had a lower plasma TNFR60 concentration compared with those in tertile 1 (P,0.02).Moreover, the only changes in consumption thatwere associated with 1-y changes in the geometricmean TNFR60 concentrations were those of VOO and vegetables (P = 0.01). This study suggests that a MD reduces TNFR concentrations in patients at high cardiovascular risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a microscopic analysis of shot-noise suppression due to long-range Coulomb interaction in semiconductor devices under ballistic transport conditions. An ensemble Monte Carlo simulator self-consistently coupled with a Poisson solver is used for the calculations. A wide range of injection-rate densities leading to different degrees of suppression is investigated. A sharp tendency of noise suppression at increasing injection densities is found to scale with a dimensionless Debye length related to the importance of space-charge effects in the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shot-noise suppression is investigated in nondegenerate diffusive conductors by means of an ensemble Monte Carlo simulator. The universal 1/3 suppression value is obtained when transport occurs under elastic collision regime provided the following conditions are satisfied: (i) The applied voltage is much larger than the thermal value; (ii) the length of the device is much greater than both the elastic mean free path and the Debye length. By fully suppressing carrier-number fluctuations, long-range Coulomb interaction is essential to obtain the 1/3 value in the low-frequency limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the shot noise of electron emission under strong applied electric fields within the Landauer-Bttiker scheme. In contrast to the previous studies of vacuum-tube emitters, we show that in new generation electron emitters, scaled down to the nanometer dimensions, shot noise much smaller than the Schottky noise is observable. Carbon nanotube field emitters are among possible candidates to observe the effect of shot-noise suppression caused by quantum partitioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclin-dependent kinases CDK4 and CDK6 are essential for the control of the cell cycle through the G1 phase. Aberrant expression of CDK4 and CDK6 is a hall- mark of cancer, which would suggest that CDK4 and CDK6 are attractive targets for cancer therapy. Herein, we report that calcein AM is a potent specific inhibitor of CDK4 and CDK6 in HCT116 human colon adenocarcinoma cells, inhibiting retinoblastoma protein (pRb) phosphorylation and inducing cell cycle arrest in the G1 phase. The metabolic effects of calcein AM (the calcein acetoxymethyl-ester) on HCT116 cells were also evaluated and the flux between the oxidative and non-oxidative branches of the pentose phos-phate pathway was significantly altered. To elucidate whe-ther these metabolic changes were due to the inhibition of CDK4 and CDK6, we also characterized the metabolic profile of a CDK4, CDK6 and CDK2 triple knockout of mouse embryonic fibroblasts. The results show that the metabolic profile associated with the depletion of CDK4, CDK6 and CDK2 coincides with the metabolic changes induced by calcein AM on HCT116 cells, thus confirming that the inhibition of CDK4 and CDK6 disrupts the balance between the oxidative and non-oxidative branches of the pentose phosphate pathway. Taken together, these results indicate that low doses of calcein can halt cell division and kill tumor cells. Thus, selective inhibition of CDK4 and CDK6 may be of greater pharmacological interest, since inhibitors of these kinases affect both cell cycle progression and the robust metabolic profile of tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

KRAS phosphorylation has been reported recently to modulate the activity of mutant KRAS protein in vitro. In this study, we defined S181 as a specific phosphorylation site required to license the oncogenic function of mutant KRAS in vivo. The phosphomutant S181A failed to induce tumors in mice, whereas the phosphomimetic mutant S181D exhibited an enhanced tumor formation capacity, compared with the wild-type KRAS protein. Reduced growth of tumors composed of cells expressing the nonphosphorylatable KRAS S181A mutant was correlated with increased apoptosis. Conversely, increased growth of tumors composed of cells expressing the phosphomimetic KRAS S181D mutant was correlated with increased activation of AKT and ERK, two major downstream effectors of KRAS. Pharmacologic treatment with PKC inhibitors impaired tumor growth associated with reduced levels of phosphorylated KRAS and reduced effector activation. In a panel of human tumor cell lines expressing various KRAS isoforms, we showed that KRAS phosphorylation was essential for survival and tumorigenic activity. Furthermore, we identified phosphorylated KRAS in a panel of primary human pancreatic tumors. Taken together, our findings establish that KRAS requires S181 phosphorylation to manifest its oncogenic properties, implying that its inhibition represents a relevant target to attack KRAS-driven tumors.