45 resultados para Trapped Neutral Atoms
Resumo:
Two-dimentional systems of trapped samples of few cold bosonic atoms submitted to strong rotation around the perpendicular axis may be realized in optical lattices and microtraps. We investigate theoretically the evolution of ground state structures of such systems as the rotational frequency Omega increases. Various kinds of ordered structures are observed. In some cases, hidden interference patterns exhibit themselves only in the pair correlation function; in some other cases explicit broken-symmetry structures appear that modulate the density. For N < 10 atoms, the standard scenario, valid for large sytems is absent, and is only gradually recovered as N increases. On the one hand, the Laughlin state in the strong rotational regime contains ordered structures much more similar to a Wigner molecule than to a fermionic quantum liquid. On the other hand, in the weak rotational regime, the possibility to obtain equilibrium states, whose density reveals an array of vortices, is restricted to the vicinity of some critical values of the rotational frequency Omega.
Resumo:
Elastic scattering of relativistic electrons and positrons by atoms is considered in the framework of the static field approximation. The scattering field is expressed as a sum of Yukawa terms to allow the use of various approximations. Accurate phase shifts have been computed by combining Bühring¿s power-series method with the WKB and Born approximations. This combined procedure allows the evaluation of differential cross sections for kinetic energies up to several tens of MeV. Numerical results are used to analyze the validity of several approximate methods, namely the first- and second-order Born approximations and the screened Mott formula, which are frequently adopted as the basis of multiple scattering theories and Monte Carlo simulations of electron and positron transport.
Resumo:
We consider vacuum solutions in M theory of the form of a five-dimensional Kaluza-Klein black hole cross T6. In a certain limit, these include the five-dimensional neutral rotating black hole (cross T6). From a type-IIA standpoint, these solutions carry D0 and D6 charges. We show that there is a simple D-brane description which precisely reproduces the Hawking-Bekenstein entropy in the extremal limit, even though supersymmetry is completely broken.
Resumo:
We argue that low-temperature effects in QED can, if anywhere, only be quantitatively interesting for bound electrons. Unluckily the dominant thermal contribution turns out to be level independent, so that it does not affect the frequency of the transition radiation.
Resumo:
Charged and neutral oxygen vacancies in the bulk and on perfect and defective surfaces of MgO are characterized as quantum-mechanical subsystems chemically bonded to the host lattice and containing most of the charge left by the removed oxygens. Attractors of the electron density appear inside the vacancy, a necessary condition for the existence of a subsystem according to the atoms in molecules theory. The analysis of the electron localization function also shows attractors at the vacancy sites, which are associated to a localization basin shared with the valence domain of the nearest oxygens. This polyatomic superanion exhibits chemical trends guided by the formal charge and the coordination of the vacancy. The topological approach is shown to be essential to understand and predict the nature and chemical reactivity of these objects. There is not a vacancy but a coreless pseudoanion that behaves as an activated host oxygen.
Resumo:
The electronic structure of the molecular solid Ni(tmdt)2, the only well characterized neutral molecular metal to date, has been studied by means of first-principles density functional calculations. It is shown that these calculations correctly describe the metallic vs semiconducting behavior of molecular conductors of this type. The origin of the band overlap leading to the metallic character and the associated Fermi surfaces has been studied.
Resumo:
This paper investigates the contribution of public investment to the reduction of regional inqualities, with a specific application to Mexico. We use quantile regressions to examine the impact of public investment on regional disparities according to the position of each region in the conditional distribution of regional income. Results confirm the hypothesis that regional inequalities can indeed be atrributed to the regional distribution of public investment, where the observed pattern shows that public investment mainly helped to reduce regional inequalities between the richest regions
Resumo:
Back-focal-plane interferometry is used to measure displacements of optically trapped samples with very high spatial and temporal resolution. However, the technique is closely related to a method that measures the rate of change in light momentum. It has long been known that displacements of the interference pattern at the back focal plane may be used to track the optical force directly, provided that a considerable fraction of the light is effectively monitored. Nonetheless, the practical application of this idea has been limited to counter-propagating, low-aperture beams where the accurate momentum measurements are possible. Here, we experimentally show that the connection can be extended to single-beam optical traps. In particular, we show that, in a gradient trap, the calibration product κ·β (where κ is the trap stiffness and 1/β is the position sensitivity) corresponds to the factor that converts detector signals into momentum changes; this factor is uniquely determined by three construction features of the detection instrument and does not depend, therefore, on the specific conditions of the experiment. Then, we find that force measurements obtained from back-focal-plane displacements are in practice not restricted to a linear relationship with position and hence they can be extended outside that regime. Finally, and more importantly, we show that these properties are still recognizable even when the system is not fully optimized for light collection. These results should enable a more general use of back-focal-plane interferometry whenever the ultimate goal is the measurement of the forces exerted by an optical trap.
Resumo:
Back-focal-plane interferometry is used to measure displacements of optically trapped samples with very high spatial and temporal resolution. However, the technique is closely related to a method that measures the rate of change in light momentum. It has long been known that displacements of the interference pattern at the back focal plane may be used to track the optical force directly, provided that a considerable fraction of the light is effectively monitored. Nonetheless, the practical application of this idea has been limited to counter-propagating, low-aperture beams where the accurate momentum measurements are possible. Here, we experimentally show that the connection can be extended to single-beam optical traps. In particular, we show that, in a gradient trap, the calibration product κ·β (where κ is the trap stiffness and 1/β is the position sensitivity) corresponds to the factor that converts detector signals into momentum changes; this factor is uniquely determined by three construction features of the detection instrument and does not depend, therefore, on the specific conditions of the experiment. Then, we find that force measurements obtained from back-focal-plane displacements are in practice not restricted to a linear relationship with position and hence they can be extended outside that regime. Finally, and more importantly, we show that these properties are still recognizable even when the system is not fully optimized for light collection. These results should enable a more general use of back-focal-plane interferometry whenever the ultimate goal is the measurement of the forces exerted by an optical trap.
Resumo:
We have analyzed the relative energy of nonmagnetic and magnetic low-lying electronic states of Ni atoms adsorbed on regular and defective sites of the MgO(001) surface. To this end cluster and periodic surface models are used within density functional theory. For Ni atoms adsorbed on oxygen vacancies at low coverage, the interaction energy between the metal and the support is much larger than on regular sites. Strong bonding results in a diamagnetic adsorbed species and the energy required to reach the high-spin state increases. Moreover, a correlation appears between the low-spin to high-spin energy difference and the interaction energy hypothesizing that it is possible to prepare the surface to tune the high-spin to low-spin energy difference. Magnetic properties of adsorbed thin films obtained upon increasing coverage are more difficult to interpret. This is because the metallic bond is readily formed and dominates over the effect of the atoms directly bound to the vacancy.
Resumo:
In this work, we investigate the influence of finite size on the recombinations dynamics of ZnO nanowires. We demonstrate that diameter as well as lenght of nanowires determine the lifetime of the neutral donor bound excitons. Our findings suggest that while the length is mainly responsible for different mode quality factors of the cavity-like nanowires, the diameter determines the influence of surface states as alternative recombinations channels for the optical modes trapped in the nanocavity. In addition, comparing nanowires grown using different catalyst we show that the surfaces states strongly depend on each precursor characteristics.
Resumo:
A scheme to generate long-range spin-spin interactions between three-level ions in a chain is presented, providing a feasible experimental route to the rich physics of well-known SU(3) models. In particular, we demonstrate different signatures of quantum chaos which can be controlled and observed in experiments with trapped ions.
Resumo:
Background: Probiotics appear to be beneficial in inflammatory bowel disease, but their mechanism of action is incompletely understood. We investigated whether probiotic-derived sphingomyelinase mediates this beneficial effect. Methodology/Principal Findings: Neutral sphingomyelinase (NSMase) activity was measured in sonicates of the probiotic L.brevis (LB)and S. thermophilus (ST) and the non-probiotic E. coli EC) and E. faecalis (EF). Lamina propria mononuclear cells (LPMC) were obtained from patients with Crohn"s disease (CD) and Ulcerative Colitis (UC), and peripheral blood mononuclear cells (PBMC) from healthy volunteers, analysing LPMC and PBMC apoptosis susceptibility, reactive oxygen species (ROS) generation and JNK activation. In some experiments, sonicates were preincubated with GSH or GW4869, a specific NSMase inhibitor. NSMase activity of LB and ST was 10-fold that of EC and EF sonicates. LB and ST sonicates induced significantly more apoptosis of CD and UC than control LPMC, whereas EC and EF sonicates failed to induce apoptosis. Pre-stimulation with anti-CD3/CD28 induced a significant and time-dependent increase in LB-induced apoptosis of LPMC and PBMC. Exposure to LB sonicates resulted in JNK activation and ROS production by LPMC. NSMase activity of LB sonicates was completely abrogated by GW4869, causing a dose-dependent reduction of LB -induced poptosis. LB and ST selectively induced immune cell apoptosis, an effect dependent on the degree of cell activation and mediated by bacterial NSMase. Conclusions: These results suggest that induction of immune cell apoptosis is a mechanism of action of some probiotics and that NSMase-mediated ceramide generation contributes to the therapeutic effects of probiotics.
Resumo:
A method to generate carbonylic compounds from alkynes under mild and neutral conditions, with excellent functional group compatibility and high yields, is described. Hydration takes place under catalytic conditions by using from 0.1 to 0.2 equivalents of the easily available and inexpensive mercury(II) p-toluensulfonamidate in a hydroalcoholic solution. After use the catalyst is iner tized and/or recycled ...
Resumo:
An analytical approximation, depending on five parameters, for the atomic screening function is proposed. The corresponding electrostatic potential takes a simple analytical form (superposition of three Yukawa potentials) well suited to most practical applications. Parameters in the screening function, determined by an analytical fitting procedure to Dirac-Hartree-Fock-Slater (DHFS) self-consistent data, are given for Z=1¿92. The reliability of this analytical approach is demonstrated by showing that (a) Born cross sections for elastic scattering of fast charged particles by the present analytical field and by the DHFS field practically coincide and (b) one-electron binding energies computed from the independent-particle model with our analytical field (corrected for exchange and electrostatic self-interaction) agree closely with the DHFS energy eigenvalues.