68 resultados para Topological K-equivalence
Resumo:
The edge excitations and related topological orders of correlated states of a fast rotating Bose gas are studied. Using exact diagonalization of small systems, we compute the energies and number of edge excitations, as well as the boson occupancy near the edge for various states. The chiral Luttinger-liquid theory of Wen is found to be a good description of the edges of the bosonic Laughlin and other states identified as members of the principal Jain sequence for bosons. However, we find that in a harmonic trap the edge of the state identified as the Moore-Read (Pfaffian) state shows a number of anomalies. An experimental way of detecting these correlated states is also discussed.
Resumo:
We make a thorough study of the process of three-body kaon absorption in nuclei, in connection with a recent FINUDA experiment which claims the existence of a deeply bound kaonic state from the observation of a peak in the Lambdad invariant mass distribution following K- absorption on 6Li. We show that the peak is naturally explained in terms of K- absorption from three nucleons leaving the rest as spectators. We can also reproduce all the other observables measured in the same experiment and used to support the hypothesis of the deeply bound kaon state. Our study also reveals interesting aspects of kaon absorption in nuclei, a process that must be understood in order to make progress in the search for K- deeply bound states in nuclei.
Resumo:
A geometrical treatment of the path integral for gauge theories with first-class constraints linear in the momenta is performed. The equivalence of reduced, Polyakov, Faddeev-Popov, and Faddeev path-integral quantization of gauge theories is established. In the process of carrying this out we find a modified version of the original Faddeev-Popov formula which is derived under much more general conditions than the usual one. Throughout this paper we emphasize the fact that we only make use of the information contained in the action for the system, and of the natural geometrical structures derived from it.
Resumo:
We study a confined mixture of bosons and fermions in the quantal degeneracy regime with attractive boson-fermion interaction. We discuss the effect that the presence of vortical states and the displacement of the trapping potentials may have on mixtures near collapse, and investigate the phase stability diagram of the K-Rb mixture in the mean-field approximation supposing in one case that the trapping potentials felt by bosons and fermions are shifted from each other, as it happens in the presence of a gravitational sag, and in another case, assuming that the Bose condensate sustains a vortex state. In both cases, we have obtained an analytical expression for the fermion effective potential when the Bose condensate is in the Thomas-Fermi regime, that can be used to determine the maxima of the Fermionic density. We have numerically checked that the values one obtains for the location of these maxima using the analytical formulas remain valid up to the critical boson and fermion numbers, above which the mixture collapses.
Resumo:
We study the properties of (K) over bar* mesons in nuclear matter using a unitary approach in coupled channels within the framework of the local hidden gauge formalism and incorporating the (K) over bar pi decay channel in matter. The in-medium (K) over bar *N interaction accounts for Pauli blocking effects and incorporates the (K) over bar* self-energy in a self-consistent manner. We also obtain the (K) over bar* (off-shell) spectral function and analyze its behavior at finite density and momentum. At a normal nuclear matter density, the (K) over bar* meson feels a moderately attractive potential, while the (K) over bar* width becomes five times larger than in free space. We estimate the transparency ratio of the gamma A -> K+K*(-) A` reaction, which we propose as a feasible scenario at the present facilities to detect changes in the properties of the (K) over bar* meson in nuclear medium.
Resumo:
The equivalence between the Lagrangian and Hamiltonian formalism is studied for constraint systems. A procedure to construct the Lagrangian constraints from the Hamiltonian constraints is given. Those Hamiltonian constraints that are first class with respect to the Hamiltonian constraints produce Lagrangian constraints that are FL-projectable.
Resumo:
The magnetic-field dependence of the magnetization of cylinders, disks, and spheres of pure type-I superconducting lead was investigated by means of isothermal measurements of first magnetization curves and hysteresis cycles. Depending on the geometry of the sample and the direction and intensity of the applied magnetic field, the intermediate state exhibits different irreversible features that become particularly highlighted in minor hysteresis cycles. The irreversibility is noticeably observed in cylinders and disks only when the magnetic field is parallel to the axis of revolution and is very subtle in spheres. When the magnetic field decreases from the normal state, the irreversibility appears at a temperature-dependent value whose distance to the thermodynamic critical field depends on the sample geometry. The irreversible features in the disks are altered when they are submitted to an annealing process. These results agree well with very recent high-resolution magneto-optical experiments in similar materials that were interpreted in terms of transitions between different topological structures for the flux configuration in the intermediate state. A discussion of the relative role of geometrical barriers for flux entry and exit and pinning effects as responsible for the magnetic irreversibility is given.
Resumo:
We study the relationship between topological scales and dynamic time scales in complex networks. The analysis is based on the full dynamics towards synchronization of a system of coupled oscillators. In the synchronization process, modular structures corresponding to well-defined communities of nodes emerge in different time scales, ordered in a hierarchical way. The analysis also provides a useful connection between synchronization dynamics, complex networks topology, and spectral graph analysis.