44 resultados para Stiffness Prediction
Resumo:
Near-infrared spectroscopy (NIRS) was used to analyse the crude protein content of dried and milled samples of wheat and to discriminate samples according to their stage of growth. A calibration set of 72 samples from three growth stages of wheat (tillering, heading and harvest) and a validation set of 28 samples was collected for this purpose. Principal components analysis (PCA) of the calibration set discriminated groups of samples according to the growth stage of the wheat. Based on these differences, a classification procedure (SIMCA) showed a very accurate classification of the validation set samples : all of them were successfully classified in each group using this procedure when both the residual and the leverage were used in the classification criteria. Looking only at the residuals all the samples were also correctly classified except one of tillering stage that was assigned to both tillering and heading stages. Finally, the determination of the crude protein content of these samples was considered in two ways: building up a global model for all the growth stages, and building up local models for each stage, separately. The best prediction results for crude protein were obtained using a global model for samples in the two first growth stages (tillering and heading), and using a local model for the harvest stage samples.
Resumo:
Regression equations predicting dissectable muscle weight in rabbits from external measurements were presented. Bone weight and weight of muscle groups were also carcass predicted. Predictive capacity of external measurements, retail cuts and muscle groups on total muscle, percent muscle, total bone and muscle to bone ratio were studied separately. Measurements on dissected retail cuts should be included in ordcr to obtain good equations for prediction of percent muscle in the carcass. Equations for predicting the muscle to bone ratio using external mcasurcments and data from the dissection of one hind leg were suggested. The equations had generally high coefficients of determination. The coefficient of determination for prediction of dissectable muscle was 0.91, and for percent muscle in the carcass 0.79.
Resumo:
ABSTRACT Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies.
Resumo:
Abstract Objective: We aimed to determine the validity of two risk scores for patients with non-muscle invasive bladder cancer in different European settings, in patients with primary tumours. Methods: We included 1,892 patients with primary stage Ta or T1 non-muscle invasive bladder cancer who underwent a transurethral resection in Spain (n = 973), the Netherlands (n = 639), or Denmark (n = 280). We evaluated recurrence-free survival and progression-free survival according to the European Organisation for Research and Treatment of Cancer (EORTC) and the Spanish Urological Club for Oncological Treatment (CUETO) risk scores for each patient and used the concordance index (c-index) to indicate discriminative ability. Results: The 3 cohorts were comparable according to age and sex, but patients from Denmark had a larger proportion of patients with the high stage and grade at diagnosis (p,0.01). At least one recurrence occurred in 839 (44%) patients and 258 (14%) patients had a progression during a median follow-up of 74 months. Patients from Denmark had the highest 10- year recurrence and progression rates (75% and 24%, respectively), whereas patients from Spain had the lowest rates (34% and 10%, respectively). The EORTC and CUETO risk scores both predicted progression better than recurrence with c-indices ranging from 0.72 to 0.82 while for recurrence, those ranged from 0.55 to 0.61. Conclusion: The EORTC and CUETO risk scores can reasonably predict progression, while prediction of recurrence is more difficult. New prognostic markers are needed to better predict recurrence of tumours in primary non-muscle invasive bladder cancer patients.
Resumo:
The prediction filters are well known models for signal estimation, in communications, control and many others areas. The classical method for deriving linear prediction coding (LPC) filters is often based on the minimization of a mean square error (MSE). Consequently, second order statistics are only required, but the estimation is only optimal if the residue is independent and identically distributed (iid) Gaussian. In this paper, we derive the ML estimate of the prediction filter. Relationships with robust estimation of auto-regressive (AR) processes, with blind deconvolution and with source separation based on mutual information minimization are then detailed. The algorithm, based on the minimization of a high-order statistics criterion, uses on-line estimation of the residue statistics. Experimental results emphasize on the interest of this approach.
Resumo:
The linear prediction coding of speech is based in the assumption that the generation model is autoregresive. In this paper we propose a structure to cope with the nonlinear effects presents in the generation of the speech signal. This structure will consist of two stages, the first one will be a classical linear prediction filter, and the second one will model the residual signal by means of two nonlinearities between a linear filter. The coefficients of this filter are computed by means of a gradient search on the score function. This is done in order to deal with the fact that the probability distribution of the residual signal still is not gaussian. This fact is taken into account when the coefficients are computed by a ML estimate. The algorithm based on the minimization of a high-order statistics criterion, uses on-line estimation of the residue statistics and is based on blind deconvolution of Wiener systems [1]. Improvements in the experimental results with speech signals emphasize on the interest of this approach.
Resumo:
Substantial collective flow is observed in collisions between lead nuclei at Large Hadron Collider (LHC) as evidenced by the azimuthal correlations in the transverse momentum distributions of the produced particles. Our calculations indicate that the global v1-flow, which at RHIC peaked at negative rapidities (named third flow component or antiflow), now at LHC is going to turn toward forward rapidities (to the same side and direction as the projectile residue). Potentially this can provide a sensitive barometer to estimate the pressure and transport properties of the quark-gluon plasma. Our calculations also take into account the initial state center-of-mass rapidity fluctuations, and demonstrate that these are crucial for v1 simulations. In order to better study the transverse momentum flow dependence we suggest a new"symmetrized" vS1(pt) function, and we also propose a new method to disentangle global v1 flow from the contribution generated by the random fluctuations in the initial state. This will enhance the possibilities of studying the collective Global v1 flow both at the STAR Beam Energy Scan program and at LHC.
Resumo:
Pensions together with savings and investments during active life are key elements of retirement planning. Motivation for personal choices about the standard of living, bequest and the replacement ratio of pension with respect to last salary income must be considered. This research contributes to the financial planning by helping to quantify long-term care economic needs. We estimate life expectancy from retirement age onwards. The economic cost of care per unit of service is linked to the expected time of needed care and the intensity of required services. The expected individual cost of long-term care from an onset of dependence is estimated separately for men and women. Assumptions on the mortality of the dependent people compared to the general population are introduced. Parameters defining eligibility for various forms of coverage by the universal public social care of the welfare system are addressed. The impact of the intensity of social services on individual predictions is assessed, and a partial coverage by standard private insurance products is also explored. Data were collected by the Spanish Institute of Statistics in two surveys conducted on the general Spanish population in 1999 and in 2008. Official mortality records and life table trends were used to create realistic scenarios for longevity. We find empirical evidence that the public long-term care system in Spain effectively mitigates the risk of incurring huge lifetime costs. We also find that the most vulnerable categories are citizens with moderate disabilities that do not qualify to obtain public social care support. In the Spanish case, the trends between 1999 and 2008 need to be further explored.
Resumo:
This paper presents an experimental study of the effects of tow-drop gaps in Variable Stiffness Panels under drop-weight impact events. Two different configurations, with and without ply-staggering, have been manufactured by Automated Fibre Placement and compared with their baseline counterpart without defects. For the study of damage resistance, three levels of low velocity impact energy are generated with a drop-weight tower. The damage area is analysed by means of ultrasonic inspection. Results of the analysed defect configurations indicate that the influence of gap defects is only relevant under small impact energy values. However, in the case of damage tolerance, the residual compressive strength after impact does not present significant differences to that of conventional straight fibre laminates. This indicates that the strength reduction is driven mainly by the damage caused by the impact event rather than by the influence of manufacturing-induced defects
Resumo:
Automated Fiber Placement is being extensively used in the production of major composite components for the aircraft industry. This technology enables the production of tow-steered panels, which have been proven to greatly improve the structural efficiency of composites by means of in-plane stiffness variation and load redistribution. However, traditional straight-fiber architectures are still preferred. One of the reasons behind this is related to the uncertainties, as a result of process-induced defects, in the mechanical performance of the laminates. This experimental work investigates the effect of the fiber angle discontinuities between different tow courses in a ply on the un-notched and open-hole tensile strength of the laminate. The influence of several manufacturing parameters are studied in detail. The results reveal that 'ply staggering' and '0% gap coverage' is an effective combination in reducing the influence of defects in these laminates
Resumo:
Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations
Resumo:
BACKGROUND AND AIMS: Liver stiffness is increasingly used in the non-invasive evaluation of chronic liver diseases. Liver stiffness correlates with hepatic venous pressure gradient (HVPG) in patients with cirrhosis and holds prognostic value in this population. Hence, accuracy in its measurement is needed. Several factors independent of fibrosis influence liver stiffness, but there is insufficient information on whether meal ingestion modifies liver stiffness in cirrhosis. We investigated the changes in liver stiffness occurring after the ingestion of a liquid standard test meal in this population. METHODS: In 19 patients with cirrhosis and esophageal varices (9 alcoholic, 9 HCV-related, 1 NASH; Child score 6.9±1.8), liver stiffness (transient elastography), portal blood flow (PBF) and hepatic artery blood flow (HABF) (Doppler-Ultrasound) were measured before and 30 minutes after receiving a standard mixed liquid meal. In 10 the HVPG changes were also measured. RESULTS: Post-prandial hyperemia was accompanied by a marked increase in liver stiffness (+27±33%; p<0.0001). Changes in liver stiffness did not correlate with PBF changes, but directly correlated with HABF changes (r = 0.658; p = 0.002). After the meal, those patients showing a decrease in HABF (n = 13) had a less marked increase of liver stiffness as compared to patients in whom HABF increased (n = 6; +12±21% vs. +62±29%,p<0.0001). As expected, post-prandial hyperemia was associated with an increase in HVPG (n = 10; +26±13%, p = 0.003), but changes in liver stiffness did not correlate with HVPG changes. CONCLUSIONS: Liver stiffness increases markedly after a liquid test meal in patients with cirrhosis, suggesting that its measurement should be performed in standardized fasting conditions. The hepatic artery buffer response appears an important factor modulating postprandial changes of liver stiffness. The post-prandial increase in HVPG cannot be predicted by changes in liver stiffness.
Resumo:
Experimentally, Ce2O3 films are used to study cerium oxide in its fully or partially reduced state, as present in many applications. We have explored the space of low energy Ce2O3 nanofilms using structure prediction and density functional calculations, yielding more than 30 distinct nanofilm structures. First, our results help to rationalize the roles of thermodynamics and kinetics in the preparation of reduced ceria nanofilms with different bulk crystalline structures (e.g. A-type or bixbyite) depending on the support used. Second, we predict a novel, as yet experimentally unresolved, nanofilm which has a structure that does not correspond to any previously reported bulk A2B3 phase and which has an energetic stability between that of A-type and bixbyite. To assist identification and fabrication of this new Ce2O3 nanofilm we calculate some observable properties and propose supports for its epitaxial growth.
Resumo:
Automobile bodily injury (BI) claims remain unsettled for a long time after the accident. The estimation of an accurate reserve for Reported But Not Settled (RBNS) claims is therefore vital for insurers. In accordance with the recommendation included in the Solvency II project (CEIOPS, 2007) a statistical model is here implemented for RBNS reserve estimation. Lognormality on empirical compensation cost data is observed for different levels of BI severity. The individual claim provision is estimated by allocating the expected mean compensation for the predicted severity of the victim’s injury, for which the upper bound is also computed. The BI severity is predicted by means of a heteroscedastic multiple choice model, because empirical evidence has found that the variability in the latent severity of injured individuals travelling by car is not constant. It is shown that this methodology can improve the accuracy of RBNS reserve estimation at all stages, as compared to the subjective assessment that has traditionally been made by practitioners.