80 resultados para Spectral-function
Resumo:
Todos los cuerpos emiten luz espontaneamente al ser calentados. El espectro de radiacion es una funcion de la temperatura y el material. Sin embargo, la mayoria de los materiales irradia, en general, en una banda espectral amplia. Algunas matereiales, por el contrario, son capaces de concentrar la radiacion termica en una banda espectral mucho mas estrecha. Estos materiales se conocen como emisores selectivos y su uso tiene un profundo impacto en la eficiencia de sistemas sistemas tales como iluminacion y conversion de energia termofotovoltaica. De los emisores selectivos se espera que sean capaces de operar a altas temperaturas y que emitan en una banda espectral muy concisa. Uno de los metodos mas prometedores para controlar y disenar el espectro de emision termico es la utilizacion de cristales fotonicos. Los cristales fotonicos son estructuras periodicas artificiales capaces de controlar y confinar la luz de formas sin precedentes. Sin embargo, la produccion de dichas estructuras con grandes superficies y capaces de soportar altas temperaturas sigue siendo una dificil tarea. Este trabajo esta dedicada al estudio de las propiedades de emision termica de estructuras 3D de silicio macroporoso en el rango espectral mid-IR (2-30 m). En particular, este trabajo se enfoca en reducir la elevada emisividad del silicio cristalino. Las muestras estudiadas en este trabajo tienen una periodicidad de 4 m, lo que limitan los resultados obtenidos a la banda del infrarrojo medio, aunque estructuras mucho mas pequenas son tecnologicamente realizables con el metodo de fabricacion utilizado. Hemos demostrado que el silicio macroporoso 3D puede inhibir completamente la emision termica en su superficie. Mas aun, esta banda se puede ajustar en un amplio margen mediante pequenos cambios durante la formacion de los macroporos. Tambien hemos demostrado que tanto el ancho como la frecuencia de la banda de inhibicion se puede doblar mediante la aplicacion de tecnicas de postprocesado adecuadas. Finalmente hemos mostrado que es posible crear bandas de baja emisividad arbitrariamente anchas mediante estructuras macroporosas aperiodicas.
Resumo:
In this article we review first some of the possibilities in which the notions of Fo lner sequences and quasidiagonality have been applied to spectral approximation problems. We construct then a canonical Fo lner sequence for the crossed product of a concrete C* -algebra and a discrete amenable group. We apply our results to the rotation algebra (which contains interesting operators like almost Mathieu operators or periodic magnetic Schrödinger operators on graphs) and the C* -algebra generated by bounded Jacobi operators.
Resumo:
The main result of this work is a parametric description of the spectral surfaces of a class of periodic 5-diagonal matrices, related to the strong moment problem. This class is a self-adjoint twin of the class of CMV matrices. Jointly they form the simplest possible classes of 5-diagonal matrices.
Resumo:
The authors focus on one of the methods for connection acceptance control (CAC) in an ATM network: the convolution approach. With the aim of reducing the cost in terms of calculation and storage requirements, they propose the use of the multinomial distribution function. This permits direct computation of the associated probabilities of the instantaneous bandwidth requirements. This in turn makes possible a simple deconvolution process. Moreover, under certain conditions additional improvements may be achieved
Resumo:
The application of Discriminant function analysis (DFA) is not a new idea in the studyof tephrochrology. In this paper, DFA is applied to compositional datasets of twodifferent types of tephras from Mountain Ruapehu in New Zealand and MountainRainier in USA. The canonical variables from the analysis are further investigated witha statistical methodology of change-point problems in order to gain a betterunderstanding of the change in compositional pattern over time. Finally, a special caseof segmented regression has been proposed to model both the time of change and thechange in pattern. This model can be used to estimate the age for the unknown tephrasusing Bayesian statistical calibration
Resumo:
The electron localization function (ELF) has been proven so far a valuable tool to determine the location of electron pairs. Because of that, the ELF has been widely used to understand the nature of the chemical bonding and to discuss the mechanism of chemical reactions. Up to now, most applications of the ELF have been performed with monodeterminantal methods and only few attempts to calculate this function for correlated wave functions have been carried out. Here, a formulation of ELF valid for mono- and multiconfigurational wave functions is given and compared with previous recently reported approaches. The method described does not require the use of the homogeneous electron gas to define the ELF, at variance with the ELF definition given by Becke. The effect of the electron correlation in the ELF, introduced by means of configuration interaction with singles and doubles calculations, is discussed in the light of the results derived from a set of atomic and molecular systems
Resumo:
The longwave emission of planetary atmospheres that contain a condensable absorbing gas in the infrared (i.e., longwave), which is in equilibrium with its liquid phase at the surface, may exhibit an upper bound. Here we analyze the effect of the atmospheric absorption of sunlight on this radiation limit. We assume that the atmospheric absorption of infrared radiation is independent of wavelength except within the spectral width of the atmospheric window, where it is zero. The temperature profile in radiative equilibrium is obtained analytically as a function of the longwave optical thickness. For illustrative purposes, numerical values for the infrared atmospheric absorption (i.e., greenhouse effect) and the liquid vapor equilibrium curve of the condensable absorbing gas refer to water. Values for the atmospheric absorption of sunlight (i.e., antigreenhouse effect) take a wide range since our aim is to provide a qualitative view of their effects. We find that atmospheres with a transparent region in the infrared spectrum do not present an absolute upper bound on the infrared emission. This result may be also found in atmospheres opaque at all infrared wavelengths if the fraction of absorbed sunlight in the atmosphere increases with the longwave opacity
Resumo:
The pseudo-spectral time-domain (PSTD) method is an alternative time-marching method to classicalleapfrog finite difference schemes in the simulation of wave-like propagating phenomena. It is basedon the fundamentals of the Fourier transform to compute the spatial derivatives of hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acoustics simulations. However, one of the first issues to be solved consists on modeling wallabsorption. Unfortunately, there are no references in the technical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals to overcome this problem are presented, validated and compared to analytical solutions in different scenarios.
Resumo:
Background: A number of studies have used protein interaction data alone for protein function prediction. Here, we introduce a computational approach for annotation of enzymes, based on the observation that similar protein sequences are more likely to perform the same function if they share similar interacting partners. Results: The method has been tested against the PSI-BLAST program using a set of 3,890 protein sequences from which interaction data was available. For protein sequences that align with at least 40% sequence identity to a known enzyme, the specificity of our method in predicting the first three EC digits increased from 80% to 90% at 80% coverage when compared to PSI-BLAST. Conclusion: Our method can also be used in proteins for which homologous sequences with known interacting partners can be detected. Thus, our method could increase 10% the specificity of genome-wide enzyme predictions based on sequence matching by PSI-BLAST alone.
Resumo:
The Pseudo-Spectral Time Domain (PSTD) method is an alternative time-marching method to classical leapfrog finite difference schemes inthe simulation of wave-like propagating phenomena. It is based on the fundamentals of the Fourier transform to compute the spatial derivativesof hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acousticssimulations. However, one of the first issues to be solved consists on modeling wall absorption. Unfortunately, there are no references in thetechnical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals toovercome this problem are presented, validated and compared to analytical solutions in different scenarios.
Resumo:
Expressions relating spectral efficiency, power, and Doppler spectrum, are derived for Rayleigh-faded wireless channels with Gaussian signal transmission. No side information on the state of the channel is assumed at the receiver. Rather, periodic reference signals are postulated in accordance with the functioning of most wireless systems. The analysis relies on a well-established lower bound, generally tight and asymptotically exact at low SNR. In contrast with most previous studies, which relied on block-fading channel models, a continuous-fading model is adopted. This embeds the Doppler spectrum directly in the derived expressions, imbuing them with practical significance. Closed-form relationships are obtained for the popular Clarke-Jakes spectrum and informative expansions, valid for arbitrary spectra, are found for the low- and high-power regimes. While the paper focuses on scalar channels, the extension to multiantenna settings is also discussed.
Resumo:
The simultaneous use of multiple transmit and receive antennas can unleash very large capacity increases in rich multipath environments. Although such capacities can be approached by layered multi-antenna architectures with per-antenna rate control, the need for short-term feedback arises as a potential impediment, in particular as the number of antennas—and thus the number of rates to be controlled—increases. What we show, however, is that the need for short-term feedback in fact vanishes as the number of antennas and/or the diversity order increases. Specifically, the rate supported by each transmit antenna becomes deterministic and a sole function of the signal-to-noise, the ratio of transmit and receive antennas, and the decoding order, all of which are either fixed or slowly varying. More generally, we illustrate -through this specific derivation— the relevance of some established random CDMA results to the single-user multi-antenna problem.
Resumo:
Expressions relating spectral efficiency, power and Doppler spectrum are derived for low-power Rayleighfaded wireless channels with proper complex signaling. Noside information on the state of the channel is assumed at the receiver. Rather, periodic reference signals are postulated inaccordance with the functioning of most wireless systems. In contrast with most previous studies, which relied on block-fading channel models, a continuous-fading model is adopted. This embeds the Doppler spectrum directly in thederived expressions thereby imbuing them with practical significance.
Resumo:
This paper aims to identify and assess the main items in the strategy followed by the EU and its member states on the externalisation of their asylum function. First, it analyses the European harmonisation of the return to safe third countries and to countries of first asylum, which is carried out by means of readmission agreements. Second, it refers to the strategies defined by the Hague and the Stockholm programs concerning the External Aspects of the European Union Asylum Policy, on the detention centres for illegal immigrants abroad, and on the proposals for delocalisation of asylum applications processing centres beyond the EU borders. Finally, this paper considers whether the strategy of externalisation of the function of asylum sometimes lacks legitimacy, and to what extent there is a fair balance between the interests of the states and the protection of the human rights of refugees and asylum seekers.
Resumo:
The paper develops a method to solve higher-dimensional stochasticcontrol problems in continuous time. A finite difference typeapproximation scheme is used on a coarse grid of low discrepancypoints, while the value function at intermediate points is obtainedby regression. The stability properties of the method are discussed,and applications are given to test problems of up to 10 dimensions.Accurate solutions to these problems can be obtained on a personalcomputer.