41 resultados para SINGULAR POTENTIALS
Poincar-Cartan intregral invariant and canonical trasformation for singular Lagrangians: an addendum
Resumo:
The results of a previous work, concerning a method for performing the canonical formalism for constrained systems, are extended when the canonical transformation proposed in that paper is explicitly time dependent.
Resumo:
Real-world images are complex objects, difficult to describe but at the same time possessing a high degree of redundancy. A very recent study [1] on the statistical properties of natural images reveals that natural images can be viewed through different partitions which are essentially fractal in nature. One particular fractal component, related to the most singular (sharpest) transitions in the image, seems to be highly informative about the whole scene. In this paper we will show how to decompose the image into their fractal components.We will see that the most singular component is related to (but not coincident with) the edges of the objects present in the scenes. We will propose a new, simple method to reconstruct the image with information contained in that most informative component.We will see that the quality of the reconstruction is strongly dependent on the capability to extract the relevant edges in the determination of the most singular set.We will discuss the results from the perspective of coding, proposing this method as a starting point for future developments.
Resumo:
The effective diffusion coefficient for the overdamped Brownian motion in a tilted periodic potential is calculated in closed analytical form. Universality classes and scaling properties for weak thermal noise are identified near the threshold tilt where deterministic running solutions set in. In this regime the diffusion may be greatly enhanced, as compared to free thermal diffusion with, for a realistic experimental setup, an enhancement of up to 14 orders of magnitude.
Resumo:
We present an alternative approach to the usual treatments of singular Lagrangians. It is based on a Hamiltonian regularization scheme inspired on the coisotropic embedding of presymplectic systems. A Lagrangian regularization of a singular Lagrangian is a regular Lagrangian defined on an extended velocity phase space that reproduces the original theory when restricted to the initial configuration space. A Lagrangian regularization does not always exists, but a family of singular Lagrangians is studied for which such a regularization can be described explicitly. These regularizations turn out to be essentially unique and provide an alternative setting to quantize the corresponding physical systems. These ideas can be applied both in classical mechanics and field theories. Several examples are discussed in detail. 1995 American Institute of Physics.
Resumo:
In this paper we will find a continuous of periodic orbits passing near infinity for a class of polynomial vector fields in R3. We consider polynomial vector fields that are invariant under a symmetry with respect to a plane and that possess a “generalized heteroclinic loop” formed by two singular points e+ and e− at infinity and their invariant manifolds � and . � is an invariant manifold of dimension 1 formed by an orbit going from e− to e+, � is contained in R3 and is transversal to . is an invariant manifold of dimension 2 at infinity. In fact, is the 2–dimensional sphere at infinity in the Poincar´e compactification minus the singular points e+ and e−. The main tool for proving the existence of such periodic orbits is the construction of a Poincar´e map along the generalized heteroclinic loop together with the symmetry with respect to .
Resumo:
In this paper we consider C1 vector fields X in R3 having a “generalized heteroclinic loop” L which is topologically homeomorphic to the union of a 2–dimensional sphere S2 and a diameter connecting the north with the south pole. The north pole is an attractor on S2 and a repeller on . The equator of the sphere is a periodic orbit unstable in the north hemisphere and stable in the south one. The full space is topologically homeomorphic to the closed ball having as boundary the sphere S2. We also assume that the flow of X is invariant under a topological straight line symmetry on the equator plane of the ball. For each n ∈ N, by means of a convenient Poincar´e map, we prove the existence of infinitely many symmetric periodic orbits of X near L that gives n turns around L in a period. We also exhibit a class of polynomial vector fields of degree 4 in R3 satisfying this dynamics.
Resumo:
In this paper we consider vector fields in R3 that are invariant under a suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two singular points (e+ and e −) and their invariant manifolds: one of dimension 2 (a sphere minus the points e+ and e −) and one of dimension 1 (the open diameter of the sphere having endpoints e+ and e −). In particular, we analyze the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar´e map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R3, and the second one is the charged rhomboidal four body problem.
Resumo:
Articulo sobre la importancia de las energias renovables y su integración arquitectónica en el camino hacia una arquitectura sostenible. Descripción y evaluación del proyecto Fachada Solar SCHOTT Iberica.
Resumo:
En la presente aportación se analiza la prosperabilidad de las cuestiones de inconstitucionalidad que en la fecha de publicación del artículo penden ante el Tribunal Constit ucional en referencia al art. 153.1 CP. Con la aprobación de la Ley Orgánica de medidas de protecció integral contra la violencia de género se incluyó en el referido precepto del texto punitivo un tipo cualificado de maltrato singular u ocasional cuando el sujeto pasivo sea esposa o ex-esposa, pareja o ex-pareja, aun sin convivencia, del maltratador, entre otros supuestos agravados. La inclusión de un delito en que tanto el sexo del sujeto pasivo como el del activo se hallan más o menos explicitados ha enerado el planteamiento de un rosario de cuestiones de inconstitucionalidad por parte de distintos órganos jurisdiccionales que están pendientes de resolución ante el Tribunal Constitucional. Dichas cuestiones plantean la posible inconstitucionalidad del art. 153.1 CP sobre la base de su posible contradicción con los arts. 10, 14 y 24.2 CP. En este trabajo se pretende salvar la constitucionalidad del precepto, sobre la base de los postulados del principio de conservación de las normas, con ayuda de una exégesis restrictiva del tipo.
Abnormal Error Monitoring in Math-Anxious Individuals: Evidence from Error-Related Brain Potentials.
Resumo:
This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants" math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a nonnumerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN.
Resumo:
Escrit que vol donar a conèixer el medi dunar litoral amb l’objectiu de recomanar la seva protecció urgent