48 resultados para RESONATOR ANTENNAS
Per-antenna rate and power control for MIMO layered architectures in the low- and high-power regimes
Resumo:
In a MIMO layered architecture, several codewordsare transmitted from a multiplicity of antennas. Although thespectral efficiency is maximized if the rates of these codewordsare separately controlled, the feedback rate within the linkadaptation loop is reduced if they are constrained to be identical.This poses a direct tradeoff between performance andfeedback overhead. This paper provides analytical expressionsthat quantify the difference in spectral efficiency between bothapproaches for arbitrary numbers of antennas. Specifically, thecharacterization takes place in the realm of the low- and highpowerregimes via expansions that are shown to have a widerange of validity.In addition, the possibility of adjusting the transmit powerof each codeword individually is considered as an alternative tothe separate control of their rates. Power allocation, however,turns out to be inferior to rate control within the context of thisproblem.
Resumo:
We present a method to compute, quickly and efficiently, the mutual information achieved by an IID (independent identically distributed) complex Gaussian signal on a block Rayleigh-faded channel without side information at the receiver. The method accommodates both scalar and MIMO (multiple-input multiple-output) settings. Operationally, this mutual information represents the highest spectral efficiency that can be attained using Gaussiancodebooks. Examples are provided that illustrate the loss in spectral efficiency caused by fast fading and how that loss is amplified when multiple transmit antennas are used. These examples are further enriched by comparisons with the channel capacity under perfect channel-state information at the receiver, and with the spectral efficiency attained by pilot-based transmission.
Resumo:
The optimization of the pilot overhead in wireless fading channels is investigated, and the dependence of this overhead on various system parameters of interest (e.g., fading rate, signal-to-noise ratio) is quantified. The achievable pilot-based spectral efficiency is expanded with respect to the fading rate about the no-fading point, which leads to an accurate order expansion for the pilot overhead. This expansion identifies that the pilot overhead, as well as the spectral efficiency penalty with respect to a reference system with genie-aided CSI (channel state information) at the receiver, depend on the square root of the normalized Doppler frequency. It is also shown that the widely-usedblock fading model is a special case of more accurate continuous fading models in terms of the achievable pilot-based spectral efficiency. Furthermore, it is established that the overhead optimization for multiantenna systems is effectively the same as for single-antenna systems with thenormalized Doppler frequency multiplied by the number of transmit antennas.
Resumo:
RESUM Un transmissor d’AM (modulació per amplitud), utilitza una de les moltes tècniques de modulació existents avui en dia. És molta la importància que té la modulació de senyals i aquests en són alguns exemples: -Facilita la propagació del senyal per cable o per aire. -Ordena l’espectre, distribuint Canals a les diferents informacions. -Disminueix la dimensió de les antenes. -Optimitza l’ample de banda de cada canal. -Evita interferències entre Canals. -Protegeix la informació de les degradacions per soroll. -Defineix la qualitat de la informació transmesa. L’objectiu principal d’aquest treball, serà realitzar un transmissor d’AM utilitzant components electrònics disponibles al mercat. Això es realitzarà mitjançant diversos procediments de disseny. Es realitzarà un procediment de disseny teòric, tot utilitzant els “datasheets” dels diferents components. Es realitzarà un procediment de disseny mitjançant la simulació, gràcies al qual es podrà provar el disseny del dispositiu i realitzar-ne algunes parts impossibles a reproduir teòricament. I finalment es realitzarà el dispositiu a la pràctica. Entre les conclusions més rellevants obtingudes en aquest treball, voldríem destacar la importància de la simulació per poder dissenyar circuits de radiofreqüència. En aquest treball s’ha demostrat que gràcies a una bona simulació, el primer prototip de dispositiu creat ens ha funcionat a la perfecció. D’altre banda, també comentar la importància d’un disseny adequat d’antena per poder aprofitar al màxim el rendiment del nostre dispositiu. Per concloure, la realització d’un aparell transmissor aporta unes nocions equilibrades d’electrònica i telecomunicacions importants per al disseny de dispositius de comunicació.
Resumo:
In this paper we study the effect of microwave absorption on the quantum relaxation rate of Mn12 molecular clusters. We have determined first the resonant frequencies of a microwave resonator containing a single crystal of Mn12-Acetate and measured initial isothermal magnetization curves while microwave power was put into the resonator. We have found that the tunneling rate changes one order of magnitude for certain frequencies. This suggests that the microwave shaking of the nuclear spin and molecular vibrational degrees of freedom is responsible for the huge increasing of the tunneling rate.
Resumo:
We study the sensitivity limits of a broadband gravitational-wave detector based on dual resonators such as nested spheres. We determine both the thermal and back-action noises when the resonators displacements are read out with an optomechanical sensor. We analyze the contributions of all mechanical modes, using a new method to deal with the force-displacement transfer functions in the intermediate frequency domain between the two gravitational-wave sensitive modes associated with each resonator. This method gives an accurate estimate of the mechanical response, together with an evaluation of the estimate error. We show that very high sensitivities can be reached on a wide frequency band for realistic parameters in the case of a dual-sphere detector.
Resumo:
Purpose: To assess the feasibility of a method based on microwave spectrometry to detect structural distortions of metallic stents in open air conditions and envisage the prospects of this approach toward possible medical applicability for the evaluation of implanted stents. Methods: Microwave absorbance spectra between 2.0 and 18.0 GHz were acquired in open air for the characterization of a set of commercial stents using a specifically design setup. Rotating each sample over 360º, 2D absorbance diagrams were generated as a function of frequency and rotation angle. To check our approach for detecting changes in stent length (fracture) and diameter (recoil), two specific tests were performed in open air. Finally, with a few adjustments, this same system provides 2D absorbance diagrams of stents immersed in a water-based phantom, this time over a bandwidth ranging from 0.2 to 1.8 GHz. Results: The authors show that metallic stents exhibit characteristic resonant frequencies in their microwave absorbance spectra in open air which depend on their length and, as a result, may reflect the occurrence of structural distortions. These resonances can be understood considering that such devices behave like dipole antennas in terms of microwave scattering. From fracture tests, the authors infer that microwave spectrometry provides signs of presence of Type I to Type IV stent fractures and allows in particular a quantitative evaluation of Type III and Type IV fractures. Recoil tests show that microwave spectrometry seems able to provide some quantitative assessment of diametrical shrinkage, but only if it involves longitudinal shortening. Finally, the authors observe that the resonant frequencies of stents placed inside the phantom shift down with respect to the corresponding open air frequencies, as it should be expected considering the increase of dielectric permittivity from air to water. Conclusions: The evaluation of stent resonant frequencies provided by microwave spectrometry allows detection and some quantitative assessment of stent fracture and recoil in open air conditions. Resonances of stents immersed in water can be also detected and their characteristic frequencies are in good agreement with theoretical estimates. Although these are promising results, further verifica tion in a more relevant phantom is required in order to foresee the real potential of this approach.
Resumo:
Compared to synthetic aperture radars (SARs), the angular resolution of microwave radiometers is quite poor. Traditionally, it has been limited by the physical size of the antenna. However, the angular resolution can be improved by means of aperture synthesis interferometric techniques. A narrow beam is synthesized during the image formation processing of the cross-correlations measured at zero-lag between pairs of signals collected by an array of antennas. The angular resolution is then determined by the maximum antenna spacing normalized to the wavelength (baseline). The next step in improving the angular resolution is the Doppler-Radiometer, somehow related to the super-synthesis radiometers and the Radiometer-SAR. This paper presents the concept of a three-antenna Doppler-Radiometer for 2D imaging. The performance of this instrument is evaluated in terms of angular/spatial resolution and radiometric sensitivity, and an L-band illustrative example is presented.
Resumo:
This work describes a simulation tool being developed at UPC to predict the microwave nonlinear behavior of planar superconducting structures with very few restrictions on the geometry of the planar layout. The software is intended to be applicable to most structures used in planar HTS circuits, including line, patch, and quasi-lumped microstrip resonators. The tool combines Method of Moments (MoM) algorithms for general electromagnetic simulation with Harmonic Balance algorithms to take into account the nonlinearities in the HTS material. The Method of Moments code is based on discretization of the Electric Field Integral Equation in Rao, Wilton and Glisson Basis Functions. The multilayer dyadic Green's function is used with Sommerfeld integral formulation. The Harmonic Balance algorithm has been adapted to this application where the nonlinearity is distributed and where compatibility with the MoM algorithm is required. Tests of the algorithm in TM010 disk resonators agree with closed-form equations for both the fundamental and third-order intermodulation currents. Simulations of hairpin resonators show good qualitative agreement with previously published results, but it is found that a finer meshing would be necessary to get correct quantitative results. Possible improvements are suggested.
Resumo:
This paper investigates the asymptotic uniform power allocation capacity of frequency nonselective multiple-inputmultiple-output channels with fading correlation at either thetransmitter or the receiver. We consider the asymptotic situation,where the number of inputs and outputs increase without boundat the same rate. A simple uniparametric model for the fadingcorrelation function is proposed and the asymptotic capacity perantenna is derived in closed form. Although the proposed correlationmodel is introduced only for mathematical convenience, itis shown that its shape is very close to an exponentially decayingcorrelation function. The asymptotic expression obtained providesa simple and yet useful way of relating the actual fadingcorrelation to the asymptotic capacity per antenna from a purelyanalytical point of view. For example, the asymptotic expressionsindicate that fading correlation is more harmful when arising atthe side with less antennas. Moreover, fading correlation does notinfluence the rate of growth of the asymptotic capacity per receiveantenna with high Eb /N0.
Resumo:
A particular property of the matched desiredimpulse response receiver is introduced in this paper, namely,the fact that full exploitation of the diversity is obtained withmultiple beamformers when the channel is spatially and timelydispersive. This particularity makes the receiver specially suitablefor mobile and underwater communications. The new structureprovides better performance than conventional and weightedVRAKE receivers, and a diversity gain with no needs of additionalradio frequency equipment. The baseband hardware neededfor this new receiver may be obtained through reconfigurabilityof the RAKE architectures available at the base station. Theproposed receiver is tested through simulations assuming UTRAfrequency-division-duplexing mode.
Resumo:
This article summarizes the main achievementsof the Multi-Element Transmit andReceive Antennas (METRA) Project, an ISTresearch and technological development project carried out between January 2000 and June 2001 by Universitat Politècnica de Catalunya, the Center for Personkommunikation of Aalborg University, Nokia Networks, Nokia Mobile Phones, and Vodafone Group Research and Development.The main objective of METRA was the performanceevaluation of multi-antenna terminals incombination with adaptive antennas at the basestation in UMTS communication systems. 1 AMIMO channel sounder was developed that providedrealistic multi-antenna channel measurements.Using these measured data, stochasticchannel models were developed and properly validated.These models were also evaluated inorder to estimate their corresponding channelcapacity. Different MIMO configurations andprocessing schemes were developed for both theFDD and TDD modes of UTRA, and their linkperformance was assessed. Performance evaluationwas completed by system simulations thatillustrated the benefits of MIMO configurationsto the network operator. Implementation cost vs.performance improvement was also covered bythe project, including the base station and terminalmanufacturer and network operator viewpoints.Finally, significant standards contributionswere generated by the project and presented to the pertinent 3GPP working groups.
Resumo:
Cooperative transmission can be seen as a "virtual" MIMO system, where themultiple transmit antennas are in fact implemented distributed by the antennas both at the source and the relay terminal. Depending on the system design, diversity/multiplexing gainsare achievable. This design involves the definition of the type of retransmission (incrementalredundancy, repetition coding), the design of the distributed space-time codes, the errorcorrecting scheme, the operation of the relay (decode&forward or amplify&forward) and thenumber of antennas at each terminal. Proposed schemes are evaluated in different conditionsin combination with forward error correcting codes (FEC), both for linear and near-optimum(sphere decoder) receivers, for its possible implementation in downlink high speed packetservices of cellular networks. Results show the benefits of coded cooperation over directtransmission in terms of increased throughput. It is shown that multiplexing gains areobserved even if the mobile station features a single antenna, provided that cell wide reuse of the relay radio resource is possible.
Resumo:
L’objectiu del projecte es facilitar el disseny i la modificació d’antenes microstrip utilitzant models circuitals. En el document s’exposa conjuntament la teoria de vàries configuracions d’antenes microstrip dispersa en varis documents i les equacions més rellevants per l’anàlisi dels fenòmens que es produeixen en cada model d’antena amb l’objectiu de realitzar un estudi detallat de les tendències dels components de cada configuració. L’estudi de les tendències es realitza per obtenir una relació entre els paràmetres físics i els components dels models circuitals proposats per a cada configuració d’antena microstrip. Utilitzant la teoria exposada en el document i l’estudi realitzat es comprova que és possible facilitar i realitzar modificacions en el disseny d’antenes microstrip mitjançant els models circuitals proposats.
Resumo:
Purpose: To assess the feasibility of a method based on microwave spectrometry to detect structural distortions of metallic stents in open air conditions and envisage the prospects of this approach toward possible medical applicability for the evaluation of implanted stents. Methods: Microwave absorbance spectra between 2.0 and 18.0 GHz were acquired in open air for the characterization of a set of commercial stents using a specifically design setup. Rotating each sample over 360º, 2D absorbance diagrams were generated as a function of frequency and rotation angle. To check our approach for detecting changes in stent length (fracture) and diameter (recoil), two specific tests were performed in open air. Finally, with a few adjustments, this same system provides 2D absorbance diagrams of stents immersed in a water-based phantom, this time over a bandwidth ranging from 0.2 to 1.8 GHz. Results: The authors show that metallic stents exhibit characteristic resonant frequencies in their microwave absorbance spectra in open air which depend on their length and, as a result, may reflect the occurrence of structural distortions. These resonances can be understood considering that such devices behave like dipole antennas in terms of microwave scattering. From fracture tests, the authors infer that microwave spectrometry provides signs of presence of Type I to Type IV stent fractures and allows in particular a quantitative evaluation of Type III and Type IV fractures. Recoil tests show that microwave spectrometry seems able to provide some quantitative assessment of diametrical shrinkage, but only if it involves longitudinal shortening. Finally, the authors observe that the resonant frequencies of stents placed inside the phantom shift down with respect to the corresponding open air frequencies, as it should be expected considering the increase of dielectric permittivity from air to water. Conclusions: The evaluation of stent resonant frequencies provided by microwave spectrometry allows detection and some quantitative assessment of stent fracture and recoil in open air conditions. Resonances of stents immersed in water can be also detected and their characteristic frequencies are in good agreement with theoretical estimates. Although these are promising results, further verifica tion in a more relevant phantom is required in order to foresee the real potential of this approach.