60 resultados para RESONATOR ANTENNA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optimization of the pilot overhead in single-user wireless fading channels is investigated, and the dependence of this overhead on various system parameters of interest (e.g., fading rate, signal-to-noise ratio) is quantified. The achievable pilot-based spectral efficiency is expanded with respect to the fading rate about the no-fading point, which leads to an accurate order expansion for the pilot overhead. This expansion identifies that the pilot overhead, as well as the spectral efficiency penalty with respect to a reference system with genie-aided CSI (channel state information) at the receiver, depend on the square root of the normalized Doppler frequency. It is also shown that the widely-used block fading model is a special case of more accurate continuous fading models in terms of the achievable pilot-based spectral efficiency. Furthermore, it is established that the overhead optimization for multiantenna systems is effectively the same as for single-antenna systems with the normalized Doppler frequency multiplied by the number of transmit antennas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A contemporary perspective on the tradeoff between transmit antenna diversity andspatial multiplexing is provided. It is argued that, in the context of most modern wirelesssystems and for the operating points of interest, transmission techniques that utilizeall available spatial degrees of freedom for multiplexing outperform techniques that explicitlysacrifice spatial multiplexing for diversity. In the context of such systems, therefore,there essentially is no decision to be made between transmit antenna diversity and spatialmultiplexing in MIMO communication. Reaching this conclusion, however, requires thatthe channel and some key system features be adequately modeled and that suitable performancemetrics be adopted; failure to do so may bring about starkly different conclusions. Asa specific example, this contrast is illustrated using the 3GPP Long-Term Evolution systemdesign.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis of the multiantenna capacity in the high-SNR regime has hitherto focused on the high-SNR slope (or maximum multiplexing gain), which quantifies the multiplicative increase as function of the number of antennas. This traditional characterization is unable to assess the impact of prominent channel features since, for a majority of channels, the slope equals the minimum of the number of transmit and receive antennas. Furthermore, a characterization based solely on the slope captures only the scaling but it has no notion of the power required for a certain capacity. This paper advocates a more refined characterization whereby, as function of SNRjdB, the high-SNR capacity is expanded as an affine function where the impact of channel features such as antenna correlation, unfaded components, etc, resides in the zero-order term or power offset. The power offset, for which we find insightful closed-form expressions, is shown to play a chief role for SNR levels of practical interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The simultaneous use of multiple transmit and receive antennas can unleash very large capacity increases in rich multipath environments. Although such capacities can be approached by layered multi-antenna architectures with per-antenna rate control, the need for short-term feedback arises as a potential impediment, in particular as the number of antennas—and thus the number of rates to be controlled—increases. What we show, however, is that the need for short-term feedback in fact vanishes as the number of antennas and/or the diversity order increases. Specifically, the rate supported by each transmit antenna becomes deterministic and a sole function of the signal-to-noise, the ratio of transmit and receive antennas, and the decoding order, all of which are either fixed or slowly varying. More generally, we illustrate -through this specific derivation— the relevance of some established random CDMA results to the single-user multi-antenna problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exact closed-form expressions are obtained for the outage probability of maximal ratio combining in η-μ fadingchannels with antenna correlation and co-channel interference. The scenario considered in this work assumes the joint presence of background white Gaussian noise and independent Rayleigh-faded interferers with arbitrary powers. Outage probability results are obtained through an appropriate generalization of the moment-generating function of theη-μ fading distribution, for which new closed-form expressions are provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spectral efficiency achievable with joint processing of pilot and data symbol observations is compared with that achievable through the conventional (separate) approach of first estimating the channel on the basis of the pilot symbols alone, and subsequently detecting the datasymbols. Studied on the basis of a mutual information lower bound, joint processing is found to provide a non-negligible advantage relative to separate processing, particularly for fast fading. It is shown that, regardless of the fading rate, only a very small number of pilot symbols (at most one per transmit antenna and per channel coherence interval) shouldbe transmitted if joint processing is allowed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A contemporary perspective on the tradeoff between transmit antenna diversity and spatial multi-plexing is provided. It is argued that, in the context of modern cellular systems and for the operating points of interest, transmission techniques that utilize all available spatial degrees of freedom for multiplexingoutperform techniques that explicitly sacrifice spatialmultiplexing for diversity. Reaching this conclusion, however, requires that the channel and some key system features be adequately modeled; failure to do so may bring about starkly different conclusions. As a specific example, this contrast is illustrated using the 3GPP Long-Term Evolution system design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optimization of the pilot overhead in wireless fading channels is investigated, and the dependence of this overhead on various system parameters of interest (e.g., fading rate, signal-to-noise ratio) is quantified. The achievable pilot-based spectral efficiency is expanded with respect to the fading rate about the no-fading point, which leads to an accurate order expansion for the pilot overhead. This expansion identifies that the pilot overhead, as well as the spectral efficiency penalty with respect to a reference system with genie-aided CSI (channel state information) at the receiver, depend on the square root of the normalized Doppler frequency. It is also shown that the widely-usedblock fading model is a special case of more accurate continuous fading models in terms of the achievable pilot-based spectral efficiency. Furthermore, it is established that the overhead optimization for multiantenna systems is effectively the same as for single-antenna systems with thenormalized Doppler frequency multiplied by the number of transmit antennas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report millimetre-wave continuum observations of the X-ray binaries Cygnus X-3, SS 433, LSI+61 303, Cygnus X-1 and GRS 1915+105. The observations were carried out with the IRAM 30 m-antenna at 250 GHz (1.25 mm) from 1998 March 14 to March 20. These millimetre measurements are complemented with centimetre observations from the Ryle Telescope, at 15 GHz (2.0 cm) and from the Green Bank Interferometer at 2.25 and 8.3 GHz (13 and 3.6 cm). Both Cygnus X-3 and SS 433 underwent moderate flaring events during our observations, whose main spectral evolution properties are described and interpreted. A significant spectral steepening was observed in both sources during the flare decay, that is likely to be caused by adiabatic expansion, inverse Compton and synchrotron losses. Finally, we also report 250 GHz upper limits for three additional undetected X-ray binary stars: LSI+65 010, LSI+61 235 and X Per.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ground clutter caused by anomalous propagation (anaprop) can affect seriously radar rain rate estimates, particularly in fully automatic radar processing systems, and, if not filtered, can produce frequent false alarms. A statistical study of anomalous propagation detected from two operational C-band radars in the northern Italian region of Emilia Romagna is discussed, paying particular attention to its diurnal and seasonal variability. The analysis shows a high incidence of anaprop in summer, mainly in the morning and evening, due to the humid and hot summer climate of the Po Valley, particularly in the coastal zone. Thereafter, a comparison between different techniques and datasets to retrieve the vertical profile of the refractive index gradient in the boundary layer is also presented. In particular, their capability to detect anomalous propagation conditions is compared. Furthermore, beam path trajectories are simulated using a multilayer ray-tracing model and the influence of the propagation conditions on the beam trajectory and shape is examined. High resolution radiosounding data are identified as the best available dataset to reproduce accurately the local propagation conditions, while lower resolution standard TEMP data suffers from interpolation degradation and Numerical Weather Prediction model data (Lokal Model) are able to retrieve a tendency to superrefraction but not to detect ducting conditions. Observing the ray tracing of the centre, lower and upper limits of the radar antenna 3-dB half-power main beam lobe it is concluded that ducting layers produce a change in the measured volume and in the power distribution that can lead to an additional error in the reflectivity estimate and, subsequently, in the estimated rainfall rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weather radar observations are currently the most reliable method for remote sensing of precipitation. However, a number of factors affect the quality of radar observations and may limit seriously automated quantitative applications of radar precipitation estimates such as those required in Numerical Weather Prediction (NWP) data assimilation or in hydrological models. In this paper, a technique to correct two different problems typically present in radar data is presented and evaluated. The aspects dealt with are non-precipitating echoes - caused either by permanent ground clutter or by anomalous propagation of the radar beam (anaprop echoes) - and also topographical beam blockage. The correction technique is based in the computation of realistic beam propagation trajectories based upon recent radiosonde observations instead of assuming standard radio propagation conditions. The correction consists of three different steps: 1) calculation of a Dynamic Elevation Map which provides the minimum clutter-free antenna elevation for each pixel within the radar coverage; 2) correction for residual anaprop, checking the vertical reflectivity gradients within the radar volume; and 3) topographical beam blockage estimation and correction using a geometric optics approach. The technique is evaluated with four case studies in the region of the Po Valley (N Italy) using a C-band Doppler radar and a network of raingauges providing hourly precipitation measurements. The case studies cover different seasons, different radio propagation conditions and also stratiform and convective precipitation type events. After applying the proposed correction, a comparison of the radar precipitation estimates with raingauges indicates a general reduction in both the root mean squared error and the fractional error variance indicating the efficiency and robustness of the procedure. Moreover, the technique presented is not computationally expensive so it seems well suited to be implemented in an operational environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the effect of microwave absorption on the quantum relaxation rate of Mn12 molecular clusters. We have determined first the resonant frequencies of a microwave resonator containing a single crystal of Mn12-Acetate and measured initial isothermal magnetization curves while microwave power was put into the resonator. We have found that the tunneling rate changes one order of magnitude for certain frequencies. This suggests that the microwave shaking of the nuclear spin and molecular vibrational degrees of freedom is responsible for the huge increasing of the tunneling rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spherical gravitational wave (GW) detectors offer a wealth of so far unexplored possibilities to detect gravitational radiation. We find that a sphere can be used as a powerful testbed for any metric theory of gravity, not only general relativity as considered so far, by making use of a deconvolution procedure for all the electric components of the Riemann tensor. We also find that the spheres cross section is large at two frequencies, and advantageous at higher frequencies in the sense that a single antenna constitutes a real xylophone in its own. Proposed GW networks will greatly benefit from this. The main features of a two large sphere observatory are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the sensitivity limits of a broadband gravitational-wave detector based on dual resonators such as nested spheres. We determine both the thermal and back-action noises when the resonators displacements are read out with an optomechanical sensor. We analyze the contributions of all mechanical modes, using a new method to deal with the force-displacement transfer functions in the intermediate frequency domain between the two gravitational-wave sensitive modes associated with each resonator. This method gives an accurate estimate of the mechanical response, together with an evaluation of the estimate error. We show that very high sensitivities can be reached on a wide frequency band for realistic parameters in the case of a dual-sphere detector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compared to synthetic aperture radars (SARs), the angular resolution of microwave radiometers is quite poor. Traditionally, it has been limited by the physical size of the antenna. However, the angular resolution can be improved by means of aperture synthesis interferometric techniques. A narrow beam is synthesized during the image formation processing of the cross-correlations measured at zero-lag between pairs of signals collected by an array of antennas. The angular resolution is then determined by the maximum antenna spacing normalized to the wavelength (baseline). The next step in improving the angular resolution is the Doppler-Radiometer, somehow related to the super-synthesis radiometers and the Radiometer-SAR. This paper presents the concept of a three-antenna Doppler-Radiometer for 2D imaging. The performance of this instrument is evaluated in terms of angular/spatial resolution and radiometric sensitivity, and an L-band illustrative example is presented.