72 resultados para Propagation waves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the dynamics of reaction-diffusion fronts under the influence of multiplicative noise. An approximate theoretical scheme is introduced to compute the velocity of the front and its diffusive wandering due to the presence of noise. The theoretical approach is based on a multiple scale analysis rather than on a small noise expansion and is confirmed with numerical simulations for a wide range of the noise intensity. We report on the possibility of noise sustained solutions with a continuum of possible velocities, in situations where only a single velocity is allowed without noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gravitationally coupled scalar fields, originally introduced by Jordan, Brans and Dicke to account for a non-constant gravitational coupling, are a prediction of many non-Einsteinian theories of gravity not excluding perturbative formulations of string theory. In this paper, we compute the cross sections for scattering and absorption of scalar and tensor gravitational waves by a resonant-mass detector in the framework of the Jordan-Brans-Dicke theory. The results are then specialized to the case of a detector of spherical shape and shown to reproduce those obtained in general relativity in a certain limit. Eventually we discuss the potential detectability of scalar waves emitted in a spherically symmetric gravitational collapse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the response and cross sections for the absorption of GW energy generated in a Jordan-Brans-Dicke theory by a resonant mass detector shaped as a hollow sphere. As a source of the GW we take a binary system in the Newtonian approximation. For masses of the stars of the order of the solar mass, the emitted GW sweeps a range of frequencies which include the first resonant mode of the detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that radiative corrections evaluated in nontrivial backgrounds lead to effective dispersion relations which are not Lorentz invariant. Since gravitational interactions increase with energy, gravity-induced radiative corrections could be relevant for the trans-Planckian problem. As a first step to explore this possibility, we compute the one-loop radiative corrections to the self-energy of a scalar particle propagating in a thermal bath of gravitons in Minkowski spacetime. We obtain terms which originate from the thermal bath and which indeed break the Lorentz invariance that possessed the propagator in the vacuum. Rather unexpectedly, however, the terms which break Lorentz invariance vanish in the high three-momentum limit. We also found that the imaginary part, which gives the rate of approach to thermal equilibrium, vanishes at one loop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coalescing compact binary systems are important sources of gravitational waves. Here we investigate the detectability of this gravitational radiation by the recently proposed laser interferometers. The spectral density of noise for various practicable configurations of the detector is also reviewed. This includes laser interferometers with delay lines and Fabry-Prot cavities in the arms, both in standard and dual recycling arrangements. The sensitivity of the detector in all those configurations is presented graphically and the signal-to-noise ratio is calculated numerically. For all configurations we find values of the detector's parameters which maximize the detectability of coalescing binaries, the discussion comprising Newtonian- as well as post-Newtonian-order effects. Contour plots of the signal-to-noise ratio are also presented in certain parameter domains which illustrate the interferometer's response to coalescing binary signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new method of operating laser interferometric gravitational-wave detectors when observing chirps of gravitational radiation from coalescing compact binary stars. This technique consists of the use of narrow-band dual recycling to increase the signal but with the tuning frequency of the detector arranged to follow the frequency of a chirp. We consider the response of such an instrument to chirps, including the effect of inevitable errors in tracking. Different possible tuning strategies are discussed. Both the final signal-to-noise ratio and timing accuracy are evaluated and are shown to be significantly improved by the use of dynamic tuning. This should allow an accurate and reliable measurement of Hubble's constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine plane-symmetric cosmological solutions to Einstein's equations which can be generated by the "soliton" technique, using the homogeneous Bianchi solutions as seeds and arbitrary numbers of real or complex poles. In some circumstances, these solutions can be interpreted as "incipient" gravitational waves on the Bianchi background. At early times they look like nonlinear inhomogeneities propagating at nearly the speed of light ("gravisolitons"), while at late times they look like cosmological gravitational waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider all generalized soliton solutions of the Einstein-Rosen form in the cylindrical context. They are Petrov type-I solutions which describe solitonlike waves interacting with a line source placed on the symmetry axis. Some of the solutions develop a curvature singularity on the axis which is typical of massive line sources, whereas others just have the conical singularity revealing the presence of a static cosmic string. The analysis is based on the asymptotic behavior of the Riemann and metric tensors, the deficit angle, and a C-velocity associated to Thornes C-energy. The C-energy is found to be radiated along the null directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the coupling of quantum massless and massive scalar particles with exact gravitational plane waves. The cross section for scattering of the quantum particles by the waves is shown to coincide with the classical cross section for scattering of geodesics. The expectation value of the scalar field stress tensor between scattering states diverges at the points where classical test particles focus after colliding with the wave. This indicates that back-reaction effects cannot be ignored for plane waves propagating in the presence of quantum particles and that classical singularities are likely to develop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use wave packet mode quantization to compute the creation of massless scalar quantum particles in a colliding plane wave spacetime. The background spacetime represents the collision of two gravitational shock waves followed by trailing gravitational radiation which focus into a Killing-Cauchy horizon. The use of wave packet modes simplifies the problem of mode propagation through the different spacetime regions which was previously studied with the use of monochromatic modes. It is found that the number of particles created in a given wave packet mode has a thermal spectrum with a temperature which is inversely proportional to the focusing time of the plane waves and which depends on the mode trajectory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the concept of a sensitive and broadband resonant mass gravitational wave detector. A massive sphere is suspended inside a second hollow one. Short, high-finesse Fabry-Perot optical cavities read out the differential displacements of the two spheres as their quadrupole modes are excited. At cryogenic temperatures, one approaches the standard quantum limit for broadband operation with reasonable choices for the cavity finesses and the intracavity light power. A molybdenum detector, of overall size of 2 m, would reach spectral strain sensitivities of 2x10-23Hz-1/2 between 1000 and 3000 Hz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All derivations of the one-dimensional telegraphers equation, based on the persistent random walk model, assume a constant speed of signal propagation. We generalize here the model to allow for a variable propagation speed and study several limiting cases in detail. We also show the connections of this model with anomalous diffusion behavior and with inertial dichotomous processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional reaction-diffusion front which propagates in a modulated medium is studied. The modulation consists of a spatial variation of the local front velocity in the transverse direction to that of the front propagation. We study analytically and numerically the final steady-state velocity and shape of the front, resulting from a nontrivial interplay between the local curvature effects and the global competition process between different maxima of the control parameter. The transient dynamics of the process is also studied numerically and analytically by means of singular perturbation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotating scroll waves are dynamical spatiotemporal structures characteristic of three-dimensional active media. It is well known that, under low excitability conditions, scroll waves develop an intrinsically unstable dynamical regime that leads to a highly disorganized pattern of wave propagation. Such a ¿turbulent¿ state bears some resemblance to fibrillation states in cardiac tissue. We show here that this unstable regime can be controlled by using a spatially distributed random forcing superimposed on a control parameter of the system. Our results are obtained from numerical simulations but an explicit analytical argument that rationalizes our observations is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of chemical waves advancing through a disordered excitable medium is investigated in terms of percolation theory and autowave properties in the framework of the light-sensitive Belousov-Zhabotinsky reaction. By controlling the number of sites with a given illumination, different percolation thresholds for propagation are observed, which depend on the relative wave transmittances of the two-state medium considered.