35 resultados para Population grating
Resumo:
By an analysis of the exchange of carriers through a semiconductor junction, a general relationship for the nonequilibrium population of the interface states in Schottky barrier diodes has been derived. Based on this relationship, an analytical expression for the ideality factor valid in the whole range of applied bias has been given. This quantity exhibits two different behaviours depending on the value of the applied bias with respect to a critical voltage. This voltage, which depends on the properties of the interfacial layer, constitutes a new parameter to complete the characterization of these junctions. A simple interpretation of the different behaviours of the ideality factor has been given in terms of the nonequilibrium charging properties of interface states, which in turn explains why apparently different approaches have given rise to similar results. Finally, the relevance of our results has been considered on the determination of the density of interface states from nonideal current-voltage characteristics and in the evaluation of the effects of the interfacial layer thickness in metal-insulator-semiconductor tunnelling diodes.
Resumo:
A subclass of games with population monotonic allocation schemes is studied, namelygames with regular population monotonic allocation schemes (rpmas). We focus on theproperties of these games and we prove the coincidence between the core and both theDavis-Maschler bargaining set and the Mas-Colell bargaining set
Resumo:
This paper analyzes the issue of the interiority of the optimal population growth rate in a two-period overlapping generations model with endogenous fertility. Using Cobb-Douglas utility and production functions, we show that the introduction of a cost of raising children allows for the possibility of the existence of an interior global maximum in the planner¿s problem, contrary to the exogenous fertility case
Resumo:
By an analysis of the exchange of carriers through a semiconductor junction, a general relationship for the nonequilibrium population of the interface states in Schottky barrier diodes has been derived. Based on this relationship, an analytical expression for the ideality factor valid in the whole range of applied bias has been given. This quantity exhibits two different behaviours depending on the value of the applied bias with respect to a critical voltage. This voltage, which depends on the properties of the interfacial layer, constitutes a new parameter to complete the characterization of these junctions. A simple interpretation of the different behaviours of the ideality factor has been given in terms of the nonequilibrium charging properties of interface states, which in turn explains why apparently different approaches have given rise to similar results. Finally, the relevance of our results has been considered on the determination of the density of interface states from nonideal current-voltage characteristics and in the evaluation of the effects of the interfacial layer thickness in metal-insulator-semiconductor tunnelling diodes.
Resumo:
A number of statistical tests for detecting population growth are described. We compared the statistical power of these tests with that of others available in the literature. The tests evaluated fall into three categories: those tests based on the distribution of the mutation frequencies, on the haplotype distribution, and on the mismatch distribution. We found that, for an extensive variety of cases, the most powerful tests for detecting population growth are Fu"s FS test and the newly developed R2 test. The behavior of the R2 test is superior for small sample sizes, whereas FS is better for large sample sizes. We also show that some popular statistics based on the mismatch distribution are very conservative. Key words: population growth, population expansion, coalescent simulations, neutrality tests