36 resultados para Poisson regression analysis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Early detection of breast cancer (BC) with mammography may cause overdiagnosis andovertreatment, detecting tumors which would remain undiagnosed during a lifetime. The aims of this study were: first, to model invasive BC incidence trends in Catalonia (Spain) taking into account reproductive and screening data; and second, to quantify the extent of BC overdiagnosis. We modeled the incidence of invasive BC using a Poisson regression model. Explanatory variables were:age at diagnosis and cohort characteristics (completed fertility rate, percentage of women that use mammography at age 50, and year of birth). This model also was used to estimate the background incidence in the absence of screening. We used a probabilistic model to estimate the expected BC incidence if women in the population usedmammography as reported in health surveys. The difference between the observed and expected cumulative incidences provided an estimate of overdiagnosis.Incidence of invasive BC increased, especially in cohorts born from 1940 to 1955. The biggest increase was observed in these cohorts between the ages of 50 to 65 years, where the final BC incidence rates more than doubled the initial ones. Dissemination of mammography was significantly associated with BC incidence and overdiagnosis. Our estimates of overdiagnosis ranged from 0.4% to 46.6%, for women born around 1935 and 1950, respectively.Our results support the existence of overdiagnosis in Catalonia attributed to mammography usage, and the limited malignant potential of some tumors may play an important role. Women should be better informed about this risk. Research should be oriented towards personalized screening and risk assessment tools

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interaction effects are usually modeled by means of moderated regression analysis. Structural equation models with non-linear constraints make it possible to estimate interaction effects while correcting formeasurement error. From the various specifications, Jöreskog and Yang's(1996, 1998), likely the most parsimonious, has been chosen and further simplified. Up to now, only direct effects have been specified, thus wasting much of the capability of the structural equation approach. This paper presents and discusses an extension of Jöreskog and Yang's specification that can handle direct, indirect and interaction effects simultaneously. The model is illustrated by a study of the effects of an interactive style of use of budgets on both company innovation and performance

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several methods have been suggested to estimate non-linear models with interaction terms in the presence of measurement error. Structural equation models eliminate measurement error bias, but require large samples. Ordinary least squares regression on summated scales, regression on factor scores and partial least squares are appropriate for small samples but do not correct measurement error bias. Two stage least squares regression does correct measurement error bias but the results strongly depend on the instrumental variable choice. This article discusses the old disattenuated regression method as an alternative for correcting measurement error in small samples. The method is extended to the case of interaction terms and is illustrated on a model that examines the interaction effect of innovation and style of use of budgets on business performance. Alternative reliability estimates that can be used to disattenuate the estimates are discussed. A comparison is made with the alternative methods. Methods that do not correct for measurement error bias perform very similarly and considerably worse than disattenuated regression

Relevância:

80.00% 80.00%

Publicador:

Resumo:

I describe some of the features that characterize the activity and migration of Cory’s shearwater during approximately one year. I also explore the influence of Moon, photoperiod, geographic position and life-history stage on the resulting patterns and the periodicity of the latter. I have principally used time series and regression analysis. Its use here is one of the first applications to the analysis of logger data in seabirds. An intriguing finding of this work is the lunar periodicity that pervades the annual cycle of this species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article we compare regression models obtained to predict PhD students’ academic performance in the universities of Girona (Spain) and Slovenia. Explanatory variables are characteristics of PhD student’s research group understood as an egocentered social network, background and attitudinal characteristics of the PhD students and some characteristics of the supervisors. Academic performance was measured by the weighted number of publications. Two web questionnaires were designed, one for PhD students and one for their supervisors and other research group members. Most of the variables were easily comparable across universities due to the careful translation procedure and pre-tests. When direct comparison was notpossible we created comparable indicators. We used a regression model in which the country was introduced as a dummy coded variable including all possible interaction effects. The optimal transformations of the main and interaction variables are discussed. Some differences between Slovenian and Girona universities emerge. Some variables like supervisor’s performance and motivation for autonomy prior to starting the PhD have the same positive effect on the PhD student’s performance in both countries. On the other hand, variables like too close supervision by the supervisor and having children have a negative influence in both countries. However, we find differences between countries when we observe the motivation for research prior to starting the PhD which increases performance in Slovenia but not in Girona. As regards network variables, frequency of supervisor advice increases performance in Slovenia and decreases it in Girona. The negative effect in Girona could be explained by the fact that additional contacts of the PhD student with his/her supervisor might indicate a higher workload in addition to or instead of a better advice about the dissertation. The number of external student’s advice relationships and social support mean contact intensity are not significant in Girona, but they have a negative effect in Slovenia. We might explain the negative effect of external advice relationships in Slovenia by saying that a lot of external advice may actually result from a lack of the more relevant internal advice

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optimum experimental designs depend on the design criterion, the model andthe design region. The talk will consider the design of experiments for regressionmodels in which there is a single response with the explanatory variables lying ina simplex. One example is experiments on various compositions of glass such asthose considered by Martin, Bursnall, and Stillman (2001).Because of the highly symmetric nature of the simplex, the class of models thatare of interest, typically Scheff´e polynomials (Scheff´e 1958) are rather differentfrom those of standard regression analysis. The optimum designs are also ratherdifferent, inheriting a high degree of symmetry from the models.In the talk I will hope to discuss a variety of modes for such experiments. ThenI will discuss constrained mixture experiments, when not all the simplex is availablefor experimentation. Other important aspects include mixture experimentswith extra non-mixture factors and the blocking of mixture experiments.Much of the material is in Chapter 16 of Atkinson, Donev, and Tobias (2007).If time and my research allows, I would hope to finish with a few comments ondesign when the responses, rather than the explanatory variables, lie in a simplex.ReferencesAtkinson, A. C., A. N. Donev, and R. D. Tobias (2007). Optimum ExperimentalDesigns, with SAS. Oxford: Oxford University Press.Martin, R. J., M. C. Bursnall, and E. C. Stillman (2001). Further results onoptimal and efficient designs for constrained mixture experiments. In A. C.Atkinson, B. Bogacka, and A. Zhigljavsky (Eds.), Optimal Design 2000,pp. 225–239. Dordrecht: Kluwer.Scheff´e, H. (1958). Experiments with mixtures. Journal of the Royal StatisticalSociety, Ser. B 20, 344–360.1