32 resultados para Performance of algae
Resumo:
In the field of observational methodology the observer is obviously a central figure, and close attention should be paid to the process through which he or she acquires, applies, and maintains the skills required. Basic training in how to apply the operational definitions of categories and the rules for coding, coupled with the opportunity to use the observation instrument in real-life situations, can have a positive effect in terms of the degree of agreement achieved when one evaluates intra- and inter-observer reliability. Several authors, including Arias, Argudo, & Alonso (2009) and Medina and Delgado (1999), have put forward proposals for the process of basic and applied training in this context. Reid y De Master (1982) focuses on the observer's performance and how to maintain the acquired skills, it being argued that periodic checks are needed after initial training because an observer may, over time, become less reliable due to the inherent complexity of category systems. The purpose of this subsequent training is to maintain acceptable levels of observer reliability. Various strategies can be used to this end, including providing feedback about those categories associated with a good reliability index, or offering re-training in how to apply those that yield lower indices. The aim of this study is to develop a performance-based index that is capable of assessing an observer's ability to produce reliable observations in conjunction with other observers.
Resumo:
The present paper studied the performance of the stable isotope signatures of carbon (δ13C), nitrogen (δ15N) and oxygen (δ18O) in plants when used to assess early vigour and grain yield (GY) in durum wheat growing under mild and moderate Mediterranean stress conditions. A collection of 114 recombinant inbred lines was grown under rainfed (RF) and supplementary irrigation (IR) conditions. Broad sense heritabilities (H2) for GY and harvest index (HI) were higher under RF conditions than under IR. Broad sense heritabilities for δ13C were always above 0·60, regardless of the plant part studied, with similar values for IR and RF trials. Some of the largest genetic correlations with GY were those shown by the δ13C content of the flag leaf blade and mature grains. Under both water treatments, mature grains showed the highest negative correlations between δ13C and GY across genotypes. Flag leaf δ13C was negatively correlated with GY only under RF conditions. The δ13C in seedlings was negatively correlated, under IR conditions only, with GY but also with early vigour. The sources of variation in early vigour were studied by stepwise analysis using the stable isotope signatures measured in seedlings. The δ13C was able to explain almost 0·20 of this variation under RF, but up to 0·30 under IR. In addition, nitrogen concentration in seedlings accounted for another 0·05 of variation, increasing the amount explained to 0·35. The sources of variation in GY were also studied through stable isotope signatures and biomass of different plant parts: δ13C was always the first parameter to appear in the models for both water conditions, explaining c. 0·20 of the variation. The second parameter (δ15N or N concentration of grain, or biomass at maturity) depended on the water conditions and the plant tissue being analysed. Oxygen isotope composition (δ18O) was only able to explain a small amount of the variation in GY. In this regard, despite the known and previously described value of δ13C as a tool in breeding, δ15N is confirmed as an additional tool in the present study. Oxygen isotope composition does not seem to offer any potential, at least under the conditions of the present study.