34 resultados para Optimal vaccine distribution
Resumo:
The objective of this paper is to correct and improve the results obtained by Van der Ploeg (1984a, 1984b) and utilized in the theoretical literature related to feedback stochastic optimal control sensitive to constant exogenous risk-aversion (see, Jacobson, 1973, Karp, 1987 and Whittle, 1981, 1989, 1990, among others) or to the classic context of risk-neutral decision-makers (see, Chow, 1973, 1976a, 1976b, 1977, 1978, 1981, 1993). More realistic and attractive, this new approach is placed in the context of a time-varying endogenous risk-aversion which is under the control of the decision-maker. It has strong qualitative implications on the agent's optimal policy during the entire planning horizon.
Resumo:
We extend the model of collective action in which groups compete for a budged by endogenizing the group platform, namely the specific mixture of public/private good and the distribution of the private good to group members which can be uniform or performance-based. While the group-optimal platform contains a degree of publicness that increases in group size and divides the private benefits uniformly, a success-maximizing leader uses incentives and distorts the platform towards more private benefits - a distortion that increases with group size. In both settings we obtain the anti-Olson type result that win probability increases with group size.
Resumo:
Report for the scientific sojourn at the Simon Fraser University, Canada, from July to September 2007. General context: landscape change during the last years is having significant impacts on biodiversity in many Mediterranean areas. Land abandonment, urbanisation and specially fire are profoundly transforming large areas in the Western Mediterranean basin and we know little on how these changes influence species distribution and in particular how these species will respond to further change in a context of global change including climate. General objectives: integrate landscape and population dynamics models in a platform allowing capturing species distribution responses to landscape changes and assessing impact on species distribution of different scenarios of further change. Specific objective 1: develop a landscape dynamic model capturing fire and forest succession dynamics in Catalonia and linked to a stochastic landscape occupancy (SLOM) (or spatially explicit population, SEPM) model for the Ortolan bunting, a species strongly linked to fire related habitat in the region. Predictions from the occupancy or spatially explicit population Ortolan bunting model (SEPM) should be evaluated using data from the DINDIS database. This database tracks bird colonisation of recently burnt big areas (&50 ha). Through a number of different SEPM scenarios with different values for a number of parameter, we should be able to assess different hypothesis in factors driving bird colonisation in new burnt patches. These factors to be mainly, landscape context (i.e. difficulty to reach the patch, and potential presence of coloniser sources), dispersal constraints, type of regenerating vegetation after fire, and species characteristics (niche breadth, etc).