80 resultados para Numerical tool
Resumo:
When the behaviour of a specific hypothesis test statistic is studied by aMonte Carlo experiment, the usual way to describe its quality is by givingthe empirical level of the test. As an alternative to this procedure, we usethe empirical distribution of the obtained \emph{p-}values and exploit itsinformation both graphically and numerically.
Resumo:
Geological and geomorphological mapping at scale 1:10.000 besides from being an important source of scientific information it is also a necessary tool for municipal organs in order to make proper decisions when dealing with geo-environmental problems concerning integral territorial development. In this work, detailed information is given on the contents of such maps, their social and economical application, and a balance of the investment and gains that derives from them
Resumo:
In this note we give a numerical characterization of hypersurface singularities in terms of the normalized Hilbert-Samuel coefficients, and we interpret this result from the point of view of rigid polynomials.
Resumo:
The possible association between the microquasar LS 5039 and the EGRET source 3EG J1824-1514 suggests that microquasars could also be sources of high energy gamma-rays. In this paper, we explore, with a detailed numerical model, if this system can produce the emission detected by EGRET (>100 MeV) through inverse Compton (IC) scattering. Our numerical approach considers a population of relativistic electrons entrained in a cylindrical inhomogeneous jet, interacting with both the radiation and the magnetic fields, taking into account the Thomson and Klein-Nishina regimes of interaction. The computed spectrum reproduces the observed spectral characteristics at very high energy.
Resumo:
We present a method for using long-term organotypic slice co-cultures of the entorhino-hippocampal formation to analyze the axon-regenerative properties of a determined compound. The culture method is based on the membrane interphase method, which is easy to perform and is generally reproducible. The degree of axonal regeneration after treatment in lesioned cultures can be seen directly using green fluorescent protein (GFP) transgenic mice or by axon tracing and histological methods. Possible changes in cell morphology after pharmacological treatment can be determined easily by focal in vitro electroporation. The well-preserved cytoarchitectonics in the co-culture facilitate the analysis of identified cells or regenerating axons. The protocol takes up to a month.
Resumo:
We consider stochastic partial differential equations with multiplicative noise. We derive an algorithm for the computer simulation of these equations. The algorithm is applied to study domain growth of a model with a conserved order parameter. The numerical results corroborate previous analytical predictions obtained by linear analysis.
Resumo:
We study the singular effects of vanishingly small surface tension on the dynamics of finger competition in the Saffman-Taylor problem, using the asymptotic techniques described by Tanveer [Philos. Trans. R. Soc. London, Ser. A 343, 155 (1993)] and Siegel and Tanveer [Phys. Rev. Lett. 76, 419 (1996)], as well as direct numerical computation, following the numerical scheme of Hou, Lowengrub, and Shelley [J. Comput. Phys. 114, 312 (1994)]. We demonstrate the dramatic effects of small surface tension on the late time evolution of two-finger configurations with respect to exact (nonsingular) zero-surface-tension solutions. The effect is present even when the relevant zero-surface-tension solution has asymptotic behavior consistent with selection theory. Such singular effects, therefore, cannot be traced back to steady state selection theory, and imply a drastic global change in the structure of phase-space flow. They can be interpreted in the framework of a recently introduced dynamical solvability scenario according to which surface tension unfolds the structurally unstable flow, restoring the hyperbolicity of multifinger fixed points.
Resumo:
Intensive numerical studies of exact ground states of the two-dimensional ferromagnetic random field Ising model at T=0, with a Gaussian distribution of fields, are presented. Standard finite size scaling analysis of the data suggests the existence of a transition at ¿c=0.64±0.08. Results are compared with existing theories and with the study of metastable avalanches in the same model.
Resumo:
We study the problem of front propagation in the presence of inertia. We extend the analytical approach for the overdamped problem to this case, and present numerical results to support our theoretical predictions. Specifically, we conclude that the velocity and shape selection problem can still be described in terms of the metastable, nonlinear, and linear overdamped regimes. We study the characteristic relaxation dynamics of these three regimes, and the existence of degenerate (¿quenched¿) solutions.
Resumo:
We present computational approaches as alternatives to a recent microwave cavity experiment by S. Sridhar and A. Kudrolli [Phys. Rev. Lett. 72, 2175 (1994)] on isospectral cavities built from triangles. A straightforward proof of isospectrality is given, based on the mode-matching method. Our results show that the experiment is accurate to 0.3% for the first 25 states. The level statistics resemble those of a Gaussian orthogonal ensemble when the integrable part of the spectrum is removed.
Resumo:
We provide analytical evidence of stochastic resonance in polarization switching vertical-cavity surface-emitting lasers (VCSELs). We describe the VCSEL by a two-mode stochastic rate equation model and apply a multiple time-scale analysis. We were able to reduce the dynamical description to a single stochastic differential equation, which is the starting point of the analytical study of stochastic resonance. We confront our results with numerical simulations on the original rate equations, validating the use of a multiple time-scale analysis on stochastic equations as an analytical tool.
Resumo:
We present a phase-field model for the dynamics of the interface between two inmiscible fluids with arbitrary viscosity contrast in a rectangular Hele-Shaw cell. With asymptotic matching techniques we check the model to yield the right Hele-Shaw equations in the sharp-interface limit, and compute the corrections to these equations to first order in the interface thickness. We also compute the effect of such corrections on the linear dispersion relation of the planar interface. We discuss in detail the conditions on the interface thickness to control the accuracy and convergence of the phase-field model to the limiting Hele-Shaw dynamics. In particular, the convergence appears to be slower for high viscosity contrasts.
Resumo:
We present a numerical method for spectroscopic ellipsometry of thick transparent films. When an analytical expression for the dispersion of the refractive index (which contains several unknown coefficients) is assumed, the procedure is based on fitting the coefficients at a fixed thickness. Then the thickness is varied within a range (according to its approximate value). The final result given by our method is as follows: The sample thickness is considered to be the one that gives the best fitting. The refractive index is defined by the coefficients obtained for this thickness.