34 resultados para New Generation Rollingstock Depot
Resumo:
The advent of new advances in mobile computing has changed the manner we do our daily work, even enabling us to perform collaborative activities. However, current groupware approaches do not offer an integrating and efficient solution that jointly tackles the flexibility and heterogeneity inherent to mobility as well as the awareness aspects intrinsic to collaborative environments. Issues related to the diversity of contexts of use are collected under the term plasticity. A great amount of tools have emerged offering a solution to some of these issues, although always focused on individual scenarios. We are working on reusing and specializing some already existing plasticity tools to the groupware design. The aim is to offer the benefits from plasticity and awareness jointly, trying to reach a real collaboration and a deeper understanding of multi-environment groupware scenarios. In particular, this paper presents a conceptual framework aimed at being a reference for the generation of plastic User Interfaces for collaborative environments in a systematic and comprehensive way. Starting from a previous conceptual framework for individual environments, inspired on the model-based approach, we introduce specific components and considerations related to groupware.
Resumo:
Background: TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetic method that combines chemical mutagenesis with high-throughput genome-wide screening for point mutation detection in genes of interest. However, this mutation discovery approach faces a particular problem which is how to obtain a mutant population with a sufficiently high mutation density. Furthermore, plant mutagenesis protocols require two successive generations (M1, M2) for mutation fixation to occur before the analysis of the genotype can begin. Results: Here, we describe a new TILLING approach for rice based on ethyl methanesulfonate (EMS) mutagenesis of mature seed-derived calli and direct screening of in vitro regenerated plants. A high mutagenesis rate was obtained (i.e. one mutation in every 451 Kb) when plants were screened for two senescence-related genes. Screening was carried out in 2400 individuals from a mutant population of 6912. Seven sense change mutations out of 15 point mutations were identified. Conclusions: This new strategy represents a significant advantage in terms of time-savings (i.e. more than eight months), greenhouse space and work during the generation of mutant plant populations. Furthermore, this effective chemical mutagenesis protocol ensures high mutagenesis rates thereby saving in waste removal costs and the total amount of mutagen needed thanks to the mutagenesis volume reduction.
Resumo:
In this work, we propose a copula-based method to generate synthetic gene expression data that account for marginal and joint probability distributions features captured from real data. Our method allows us to implant significant genes in the synthetic dataset in a controlled manner, giving the possibility of testing new detection algorithms under more realistic environments.
Resumo:
Planarians are a group of free-living platyhelminths (triclads) best-known largely due to long-standing regeneration and pattern formation research. However, the group"s diversity and evolutionary history has been mostly overlooked. A few taxonomists have focused on certain groups, resulting in the description of many species and the establishment of higher-level groups within the Tricladida. However, the scarcity of morphological features precludes inference of phylogenetic relationships among these taxa. The incorporation of molecular markers to study their diversity and phylogenetic relationships has facilitated disentangling many conundrums related to planarians and even allowed their use as phylogeographic model organisms. Here, we present some case examples ranging from delimiting species in an integrative style, and barcoding them, to analysing their evolutionary history on a lower scale to infer processes affecting biodiversity origin, or on a higher scale to understand the genus level or even higher relationships. In many cases, these studies have allowed proposing better classifications and resulted in taxonomical changes. We also explain shortcomings resulting in a lack of resolution or power to apply the most up-to-date data analyses. Next-generation sequencing methodologies may help improve this situation and accelerate their use as model organisms.