65 resultados para MgGa alloy
Resumo:
Neutron-scattering techniques have been used to study the premartensitic state of a family of Cu-Al-Be alloys, which transform from the bcc phase to an 18R martensitic structure. We find that the phonon modes of the TA2[110] branch have very low energies with anomalous temperature dependence. A slight anomaly at q=2/3 was observed; this anomaly, however, does not change significantly with temperature. No elastic peaks, related to the martensite structure, were found in the premartensitic state of these alloys. The results are compared with measurements, performed under the same instrumental conditions, on two Cu-Al-Ni and a Cu-Zn-Al martensitic alloy.
Resumo:
Domain growth in a two-dimensional binary alloy is studied by means of Monte Carlo simulation of an ABV model. The dynamics consists of exchanges of particles with a small concentration of vacancies. The influence of changing the vacancy concentration and finite-size effects has been analyzed. Features of the vacancy diffusion during domain growth are also studied. The anomalous character of the diffusion due to its correlation with local order is responsible for the obtained fast-growth behavior.
Resumo:
Experimental data from ultrasonic and inelastic neutron scattering measurements are analyzed for different families of Cu-based shape-memory alloys. It is shown that the transition occurs at a value, independent of composition and alloy family, of the ratio between the elastic constants associated with the two shears necessary to accomplish the lattice distortion from the bcc to the close-packed structure. The zone boundary frequency of the TA2[110] branch evaluated at the transition point (TM), weakly depends, for each family, on composition. A linear relationship between this frequency and the inverse of the elastic constant C', both quantities evaluated at TM, has been found, in agreement with the prediction of a Landau model proposed for martensitic transformations.
Resumo:
We present an experimental study of the premartensitic and martensitic phase transitions in a Ni2MnGa single crystal by using ultrasonic techniques. The effect of applied magnetic field and uniaxial compressive stress has been investigated. It has been found that they substantially modify the elastic and magnetic behavior of the alloy. These experimental findings are a consequence of magnetoelastic effects. The measured magnetic and vibrational behavior agrees with the predictions of a recently proposed Landau-type model [A. Planes et al., Phys. Rev. Lett. 79, 3926 (1997)] that incorporates a magnetoelastic coupling as a key ingredient.
Resumo:
A Monte Carlo study of the late time growth of L12-ordered domains in a fcc A3B binary alloy is presented. The energy of the alloy has been modeled by a nearest-neighbor interaction Ising Hamiltonian. The system exhibits a fourfold degenerated ground state and two kinds of interfaces separating ordered domains: flat and curved antiphase boundaries. Two different dynamics are used in the simulations: the standard atom-atom exchange mechanism and the more realistic vacancy-atom exchange mechanism. The results obtained by both methods are compared. In particular we study the time evolution of the excess energy, the structure factor and the mean distance between walls. In the case of atom-atom exchange mechanism anisotropic growth has been found: two characteristic lengths are needed in order to describe the evolution. Contrarily, with the vacancyatom exchange mechanism scaling with a single length holds. Results are contrasted with existing experiments in Cu3Au and theories for anisotropic growth.
Resumo:
The magnetocaloric effect that originates from the martensitic transition in the ferromagnetic Ni-Mn-Gashape-memory alloy is studied. We show that this effect is controlled by the magnetostructural coupling at boththe martensitic variant and magnetic domain length scales. A large entropy change induced by moderatemagnetic fields is obtained for alloys in which the magnetic moment of the two structural phases is not verydifferent. We also show that this entropy change is not associated with the entropy difference between themartensitic and the parent phase arising from the change in the crystallographic structure which has beenfound to be independent of the magnetic field within this range of fields.
Resumo:
Applying a magnetic field to a ferromagnetic Ni50Mn34In16 alloy in the martensitic state induces a structural phase transition to the austenitic state. This is accompanied by a strain which recovers on removing the magnetic field, giving the system a magnetically superelastic character. A further property of this alloy is that it also shows the inverse magnetocaloric effect. The magnetic superelasticity and the inverse magnetocaloric effect in Ni-Mn-In and their association with the first-order structural transition are studied by magnetization, strain, and neutron-diffraction studies under magnetic field.
Resumo:
Acoustic emission avalanche distributions are studied in different alloy systems that exhibit a phase transition from a bcc to a close-packed structure. After a small number of thermal cycles through the transition, the distributions become critically stable (exhibit power-law behavior) and can be characterized by an exponent alpha. The values of alpha can be classified into universality classes, which depend exclusively on the symmetry of the resulting close-packed structure.
Resumo:
The kinetics of crystallization of four amorphous (or partially amorphous) melt spun Nd-Fe-B alloys induced by thermal treatment is studied by means of differential scanning calorimetry and scanning electron microscopy, In the range of temperatures explored experimentally, the crystallization process is thermally activated and generally proceeds in various stages. The Curie temperature and the crystallization behavior have been measured. The apparent activation energy of crystallization of most of the crystallization stages has been determined for each melt spun alloy. The explicit form of the kinetic equation that best describes the first stage of crystallization has been found. It follows in general the Johnson-Mehl-Avrami-Erofe'ev model, but clear deviations to that model occur for one alloy. Scanning electron microscopy demonstrates that preferentially hetereogeneous nucleation occurs at the ribbon surface which was in contact with the wheel. From crystallization kinetics results the lower part of the experimental time-temperature-transformation curves for all studied alloys are deduced and extrapolated to the high temperature limit of their range of validity, also deduced.
Resumo:
We consider diffusion of a passive substance C in a phase-separating nonmiscible binary alloy under turbulent mixing. The substance is assumed to have different diffusion coefficients in the pure phases A and B, leading to a spatially and temporarily dependent diffusion ¿coefficient¿ in the diffusion equation plus convective term. In this paper we consider especially the effects of a turbulent flow field coupled to both the Cahn-Hilliard type evolution equation of the medium and the diffusion equation (both, therefore, supplemented by a convective term). It is shown that the formerly observed prolonged anomalous diffusion [H. Lehr, F. Sagués, and J.M. Sancho, Phys. Rev. E 54, 5028 (1996)] is no longer seen if a flow of sufficient intensity is supplied.
Resumo:
We study the effect of a magnetic field on the martensitic transition of a Cu-Al-Mn shape-memory alloy. The martensitic transition has been studied through resistance measurements under applied magnetic fields ranging from 0 to 50 kOe. Negative magnetoresistance showing an almost linear dependence with the square of the magnetization has been observed. This magnetoresistive effect is associated with the existence of small ferromagnetic Mn-clusters. Its strength and thermal dependence is different in both phases. The martensitic transition temperature is slightly increased and its spread in temperature significantly reduced upon increasing the field. These results show the existence of magnetoelastic coupling, which favors the nucleation of those martensitic variants with the easy magnetization axis aligned with the field.
Resumo:
We deal with the hysteretic behavior of partial cycles in the two¿phase region associated with the martensitic transformation of shape¿memory alloys. We consider the problem from a thermodynamic point of view and adopt a local equilibrium formalism, based on the idea of thermoelastic balance, from which a formal writing follows a state equation for the material in terms of its temperature T, external applied stress ¿, and transformed volume fraction x. To describe the striking memory properties exhibited by partial transformation cycles, state variables (x,¿,T) corresponding to the current state of the system have to be supplemented with variables (x,¿,T) corresponding to points where the transformation control parameter (¿¿ and/or T) had reached a maximum or a minimum in the previous thermodynamic history of the system. We restrict our study to simple partial cycles resulting from a single maximum or minimum of the control parameter. Several common features displayed by such partial cycles and repeatedly observed in experiments lead to a set of analytic restrictions, listed explicitly in the paper, to be verified by the dissipative term of the state equation, responsible for hysteresis. Finally, using calorimetric data of thermally induced partial cycles through the martensitic transformation in a Cu¿Zn¿Al alloy, we have fitted a given functional form of the dissipative term consistent with the analytic restrictions mentioned above.
Resumo:
We have studied the effect of heat treatment on the magnetic properties and on the martensitic transition of the Ni50Mn30Al20 alloy. A mixed L21+B2 state is obtained in the as-prepared sample, while no L21 order is retained in the sample quenched from high temperature. For the two heat treatments, the samples order antiferromagnetically, but there is evidence of coexisting ferromagnetic interactions. A martensitic transition occurs below the magnetic one for quenched samples. However, the martensitic transition is inhibited in the as-prepared sample.
Resumo:
NdFeB melt-spun amorphous or partially amorphous alloys of four compositions were prepared. Their crystallization kinetics induced by thermal treatment was studied by differential scanning calorimetry and scanning and transmission electron microscopy. Scanning electron microscopy demonstrated that heterogeneous nucleation occurs preferentially at the ribbon surface which was in contact with the wheel. The explicit form of the kinetic equation that best describes the first stage of crystallization under high undercooling conditions was obtained for each alloy. From the crystallization results, the lower part of the experimental time-temperature-transformation curves was deduced for each alloy and extrapolated up to the high-temperature limit of their validity. Microstructural observations showed a typical size of the microcrystals obtained by heat treatment of ~100 nm. From the magnetic properties measured with a vibrating sample magnetometer, the same magnetic behavior of partially crystallized alloys is observed regardless of the temperature of annealing provided the same crystallization fraction, x, is achieved, at least for small values of x (typically ~10%).
Resumo:
Partial crystallization of the metallic glass Co66Si16B12Fe4Mo2 was performed by annealing at temperatures between 500 and 540°C for 10-20 min, resulting in crystallite volume fractions of (0.7-5)×10¿3 and sizes of 50-100 nm. This two-phase alloy presents a remarkable feature: a hysteresis loop shift that can be tailored by simply premagnetizing the sample in the adequate magnetic field. Shifts as large as five times the coercive field have been obtained which make them interesting for application as magnetic cores in dc pulse transformers. The asymetrical magnetic reversal is explained in terms of the magnetic dipolar field interaction and the observed hysteresis loops have been satisfactorily simulated by a modification of Stoner-Wohlfarth¿s model of coherent rotations.