123 resultados para Invariant polynomials
Resumo:
The issue of de Sitter invariance for a massless minimally coupled scalar field is examined. Formally, it is possible to construct a de Sitterinvariant state for this case provided that the zero mode of the field is quantized properly. Here we take the point of view that this state is physically acceptable, in the sense that physical observables can be computed and have a reasonable interpretation. In particular, we use this vacuum to derive a new result: that the squared difference between the field at two points along a geodesic observers spacetime path grows linearly with the observers proper time for a quantum state that does not break de Sitter invariance. Also, we use the Hadamard formalism to compute the renormalized expectation value of the energy-momentum tensor, both in the O(4)-invariant states introduced by Allen and Follaci, and in the de Sitterinvariant vacuum. We find that the vacuum energy density in the O(4)-invariant case is larger than in the de Sitterinvariant case.
Resumo:
In this paper we will find a continuous of periodic orbits passing near infinity for a class of polynomial vector fields in R3. We consider polynomial vector fields that are invariant under a symmetry with respect to a plane and that possess a “generalized heteroclinic loop” formed by two singular points e+ and e− at infinity and their invariant manifolds � and . � is an invariant manifold of dimension 1 formed by an orbit going from e− to e+, � is contained in R3 and is transversal to . is an invariant manifold of dimension 2 at infinity. In fact, is the 2–dimensional sphere at infinity in the Poincar´e compactification minus the singular points e+ and e−. The main tool for proving the existence of such periodic orbits is the construction of a Poincar´e map along the generalized heteroclinic loop together with the symmetry with respect to .
Resumo:
In this paper we consider C1 vector fields X in R3 having a “generalized heteroclinic loop” L which is topologically homeomorphic to the union of a 2–dimensional sphere S2 and a diameter connecting the north with the south pole. The north pole is an attractor on S2 and a repeller on . The equator of the sphere is a periodic orbit unstable in the north hemisphere and stable in the south one. The full space is topologically homeomorphic to the closed ball having as boundary the sphere S2. We also assume that the flow of X is invariant under a topological straight line symmetry on the equator plane of the ball. For each n ∈ N, by means of a convenient Poincar´e map, we prove the existence of infinitely many symmetric periodic orbits of X near L that gives n turns around L in a period. We also exhibit a class of polynomial vector fields of degree 4 in R3 satisfying this dynamics.
Resumo:
In this paper we consider vector fields in R3 that are invariant under a suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two singular points (e+ and e −) and their invariant manifolds: one of dimension 2 (a sphere minus the points e+ and e −) and one of dimension 1 (the open diameter of the sphere having endpoints e+ and e −). In particular, we analyze the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar´e map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R3, and the second one is the charged rhomboidal four body problem.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
In two previous papers [J. Differential Equations, 228 (2006), pp. 530 579; Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 1261 1300] we have developed fast algorithms for the computations of invariant tori in quasi‐periodic systems and developed theorems that assess their accuracy. In this paper, we study the results of implementing these algorithms and study their performance in actual implementations. More importantly, we note that, due to the speed of the algorithms and the theoretical developments about their reliability, we can compute with confidence invariant objects close to the breakdown of their hyperbolicity properties. This allows us to identify a mechanism of loss of hyperbolicity and measure some of its quantitative regularities. We find that some systems lose hyperbolicity because the stable and unstable bundles approach each other but the Lyapunov multipliers remain away from 1. We find empirically that, close to the breakdown, the distances between the invariant bundles and the Lyapunov multipliers which are natural measures of hyperbolicity depend on the parameters, with power laws with universal exponents. We also observe that, even if the rigorous justifications in [J. Differential Equations, 228 (2006), pp. 530-579] are developed only for hyperbolic tori, the algorithms work also for elliptic tori in Hamiltonian systems. We can continue these tori and also compute some bifurcations at resonance which may lead to the existence of hyperbolic tori with nonorientable bundles. We compute manifolds tangent to nonorientable bundles.
Resumo:
The Bohnenblust-Hille inequality says that the $\ell^{\frac{2m}{m+1}}$ -norm of the coefficients of an $m$-homogeneous polynomial $P$ on $\Bbb{C}^n$ is bounded by $\| P \|_\infty$ times a constant independent of $n$, where $\|\cdot \|_\infty$ denotes the supremum norm on the polydisc $\mathbb{D}^n$. The main result of this paper is that this inequality is hypercontractive, i.e., the constant can be taken to be $C^m$ for some $C>1$. Combining this improved version of the Bohnenblust-Hille inequality with other results, we obtain the following: The Bohr radius for the polydisc $\mathbb{D}^n$ behaves asymptotically as $\sqrt{(\log n)/n}$ modulo a factor bounded away from 0 and infinity, and the Sidon constant for the set of frequencies $\bigl\{ \log n: n \text{a positive integer} \le N\bigr\}$ is $\sqrt{N}\exp\{(-1/\sqrt{2}+o(1))\sqrt{\log N\log\log N}\}$.
Resumo:
We present an algorithm for the computation of reducible invariant tori of discrete dynamical systems that is suitable for tori of dimensions larger than 1. It is based on a quadratically convergent scheme that approximates, at the same time, the Fourier series of the torus, its Floquet transformation, and its Floquet matrix. The Floquet matrix describes the linearization of the dynamics around the torus and, hence, its linear stability. The algorithm presents a high degree of parallelism, and the computational effort grows linearly with the number of Fourier modes needed to represent the solution. For these reasons it is a very good option to compute quasi-periodic solutions with several basic frequencies. The paper includes some examples (flows) to show the efficiency of the method in a parallel computer. In these flows we compute invariant tori of dimensions up to 5, by taking suitable sections.
Resumo:
We describe an equivalence of categories between the category of mixed Hodge structures and a category of vector bundles on the toric complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalises the notion of R-split mixed Hodge structure and compute extensions in the category of mixed Hodge structures in terms of extensions of the corresponding vector bundles. We also give a relative version of this correspondence and apply it to define stratifications of the bases of the variations of mixed Hodge structure.
Resumo:
Let A be a simple, unital, finite, and exact C*-algebra which absorbs the Jiang-Su algebra Z tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomor phism, and prove the conjecture in several cases. In these same cases - Z-stable algebras all - we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of Z-stable C*-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott's classification conjecture -that K-theoretic invariants will classify separable and nuclear C*-algebras- with the recent appearance of counterexamples to its strongest concrete form.
Resumo:
For bilipschitz images of Cantor sets in Rd we estimate the Lipschitz harmonic capacity and show this capacity is invariant under bilipschitz homeomorphisms.
Resumo:
We prove that the Cuntz semigroup is recovered functorially from the Elliott invariant for a large class of C¤-algebras. In particular, our results apply to the largest class of simple C¤-algebras for which K-theoretic classification can be hoped for. This work has three significant consequences. First, it provides new conceptual insight into Elliott's classification program, proving that the usual form of the Elliott conjecture is equivalent, among Z-stable algebras, to a conjecture which is in general substantially weaker and for which there are no known counterexamples. Second and third, it resolves, for the class of algebras above, two conjectures of Blackadar and Handelman concerning the basic structure of dimension functions on C¤-algebras. We also prove in passing that the Kuntz-Pedersen semigroup is recovered functorially from the Elliott invariant for all simple unital C¤-algebras of interest.