121 resultados para Integration testing
Resumo:
In this paper, we consider the ATM networks in which the virtual path concept is implemented. The question of how to multiplex two or more diverse traffic classes while providing different quality of service requirements is a very complicated open problem. Two distinct options are available: integration and segregation. In an integration approach all the traffic from different connections are multiplexed onto one VP. This implies that the most restrictive QOS requirements must be applied to all services. Therefore, link utilization will be decreased because unnecessarily stringent QOS is provided to all connections. With the segregation approach the problem can be much simplified if different types of traffic are separated by assigning a VP with dedicated resources (buffers and links). Therefore, resources may not be efficiently utilized because no sharing of bandwidth can take place across the VP. The probability that the bandwidth required by the accepted connections exceeds the capacity of the link is evaluated with the probability of congestion (PC). Since the PC can be expressed as the CLP, we shall simply carry out bandwidth allocation using the PC. We first focus on the influence of some parameters (CLP, bit rate and burstiness) on the capacity required by a VP supporting a single traffic class using the new convolution approach. Numerical results are presented both to compare the required capacity and to observe which conditions under each approach are preferred
Resumo:
This paper presents the use of a mobile robot platform as an innovative educational tool in order to promote and integrate different curriculum knowledge. Hence, it is presented the acquired experience within a summer course named ldquoapplied mobile roboticsrdquo. The main aim of the course is to integrate different subjects as electronics, programming, architecture, perception systems, communications, control and trajectory planning by using the educational open mobile robot platform PRIM. The summer course is addressed to a wide range of student profiles. However, it is of special interests to the students of electrical and computer engineering around their final academic year. The summer course consists of the theoretical and laboratory sessions, related to the following topics: design & programming of electronic devices, modelling and control systems, trajectory planning and control, and computer vision systems. Therefore, the clues for achieving a renewed path of progress in robotics are the integration of several knowledgeable fields, such as computing, communications, and control sciences, in order to perform a higher level reasoning and use decision tools with strong theoretical base
Resumo:
Quantitative or algorithmic trading is the automatization of investments decisions obeying a fixed or dynamic sets of rules to determine trading orders. It has increasingly made its way up to 70% of the trading volume of one of the biggest financial markets such as the New York Stock Exchange (NYSE). However, there is not a signi cant amount of academic literature devoted to it due to the private nature of investment banks and hedge funds. This projects aims to review the literature and discuss the models available in a subject that publications are scarce and infrequently. We review the basic and fundamental mathematical concepts needed for modeling financial markets such as: stochastic processes, stochastic integration and basic models for prices and spreads dynamics necessary for building quantitative strategies. We also contrast these models with real market data with minutely sampling frequency from the Dow Jones Industrial Average (DJIA). Quantitative strategies try to exploit two types of behavior: trend following or mean reversion. The former is grouped in the so-called technical models and the later in the so-called pairs trading. Technical models have been discarded by financial theoreticians but we show that they can be properly cast into a well defined scientific predictor if the signal generated by them pass the test of being a Markov time. That is, we can tell if the signal has occurred or not by examining the information up to the current time; or more technically, if the event is F_t-measurable. On the other hand the concept of pairs trading or market neutral strategy is fairly simple. However it can be cast in a variety of mathematical models ranging from a method based on a simple euclidean distance, in a co-integration framework or involving stochastic differential equations such as the well-known Ornstein-Uhlenbeck mean reversal ODE and its variations. A model for forecasting any economic or financial magnitude could be properly defined with scientific rigor but it could also lack of any economical value and be considered useless from a practical point of view. This is why this project could not be complete without a backtesting of the mentioned strategies. Conducting a useful and realistic backtesting is by no means a trivial exercise since the \laws" that govern financial markets are constantly evolving in time. This is the reason because we make emphasis in the calibration process of the strategies' parameters to adapt the given market conditions. We find out that the parameters from technical models are more volatile than their counterpart form market neutral strategies and calibration must be done in a high-frequency sampling manner to constantly track the currently market situation. As a whole, the goal of this project is to provide an overview of a quantitative approach to investment reviewing basic strategies and illustrating them by means of a back-testing with real financial market data. The sources of the data used in this project are Bloomberg for intraday time series and Yahoo! for daily prices. All numeric computations and graphics used and shown in this project were implemented in MATLAB^R scratch from scratch as a part of this thesis. No other mathematical or statistical software was used.
Resumo:
A recent finding of the structural VAR literature is that the response of hours worked to a technology shock depends on the assumption on the order of integration of the hours. In this work we relax this assumption, allowing for fractional integration and long memory in the process for hours and productivity. We find that the sign and magnitude of the estimated impulse responses of hours to a positive technology shock depend crucially on the assumptions applied to identify them. Responses estimated with short-run identification are positive and statistically significant in all datasets analyzed. Long-run identification results in negative often not statistically significant responses. We check validity of these assumptions with the Sims (1989) procedure, concluding that both types of assumptions are appropriate to recover the impulse responses of hours in a fractionally integrated VAR. However, the application of longrun identification results in a substantial increase of the sampling uncertainty. JEL Classification numbers: C22, E32. Keywords: technology shock, fractional integration, hours worked, structural VAR, identification
Resumo:
Background: Single nucleotide polymorphisms (SNPs) are the most frequent type of sequence variation between individuals, and represent a promising tool for finding genetic determinants of complex diseases and understanding the differences in drug response. In this regard, it is of particular interest to study the effect of non-synonymous SNPs in the context of biological networks such as cell signalling pathways. UniProt provides curated information about the functional and phenotypic effects of sequence variation, including SNPs, as well as on mutations of protein sequences. However, no strategy has been developed to integrate this information with biological networks, with the ultimate goal of studying the impact of the functional effect of SNPs in the structure and dynamics of biological networks. Results: First, we identified the different challenges posed by the integration of the phenotypic effect of sequence variants and mutations with biological networks. Second, we developed a strategy for the combination of data extracted from public resources, such as UniProt, NCBI dbSNP, Reactome and BioModels. We generated attribute files containing phenotypic and genotypic annotations to the nodes of biological networks, which can be imported into network visualization tools such as Cytoscape. These resources allow the mapping and visualization of mutations and natural variations of human proteins and their phenotypic effect on biological networks (e.g. signalling pathways, protein-protein interaction networks, dynamic models). Finally, an example on the use of the sequence variation data in the dynamics of a network model is presented. Conclusion: In this paper we present a general strategy for the integration of pathway and sequence variation data for visualization, analysis and modelling purposes, including the study of the functional impact of protein sequence variations on the dynamics of signalling pathways. This is of particular interest when the SNP or mutation is known to be associated to disease. We expect that this approach will help in the study of the functional impact of disease-associated SNPs on the behaviour of cell signalling pathways, which ultimately will lead to a better understanding of the mechanisms underlying complex diseases.
Resumo:
Background: Recent advances on high-throughput technologies have produced a vast amount of protein sequences, while the number of high-resolution structures has seen a limited increase. This has impelled the production of many strategies to built protein structures from its sequence, generating a considerable amount of alternative models. The selection of the closest model to the native conformation has thus become crucial for structure prediction. Several methods have been developed to score protein models by energies, knowledge-based potentials and combination of both.Results: Here, we present and demonstrate a theory to split the knowledge-based potentials in scoring terms biologically meaningful and to combine them in new scores to predict near-native structures. Our strategy allows circumventing the problem of defining the reference state. In this approach we give the proof for a simple and linear application that can be further improved by optimizing the combination of Zscores. Using the simplest composite score () we obtained predictions similar to state-of-the-art methods. Besides, our approach has the advantage of identifying the most relevant terms involved in the stability of the protein structure. Finally, we also use the composite Zscores to assess the conformation of models and to detect local errors.Conclusion: We have introduced a method to split knowledge-based potentials and to solve the problem of defining a reference state. The new scores have detected near-native structures as accurately as state-of-art methods and have been successful to identify wrongly modeled regions of many near-native conformations.
Resumo:
The increasing volume of data describing humandisease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the@neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system’s architecture is generic enough that it could be adapted to the treatment of other diseases.Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers cliniciansthe tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medicalresearchers gain access to a critical mass of aneurysm related data due to the system’s ability to federate distributed informationsources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access andwork on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand forperforming computationally intensive simulations for treatment planning and research.
Resumo:
This paper discusses the role of deterministic components in the DGP and in the auxiliary regression model which underlies the implementation of the Fractional Dickey-Fuller (FDF) test for I(1) against I(d) processes with d ∈ [0, 1). This is an important test in many economic applications because I(d) processess with d & 1 are mean-reverting although, when 0.5 ≤ d & 1,, like I(1) processes, they are nonstationary. We show how simple is the implementation of the FDF in these situations, and argue that it has better properties than LM tests. A simple testing strategy entailing only asymptotically normally distributed tests is also proposed. Finally, an empirical application is provided where the FDF test allowing for deterministic components is used to test for long-memory in the per capita GDP of several OECD countries, an issue that has important consequences to discriminate between growth theories, and on which there is some controversy.
Resumo:
This paper proposes a method to conduct inference in panel VAR models with cross unit interdependencies and time variations in the coefficients. The approach can be used to obtain multi-unit forecasts and leading indicators and to conduct policy analysis in a multiunit setups. The framework of analysis is Bayesian and MCMC methods are used to estimate the posterior distribution of the features of interest. The model is reparametrized to resemble an observable index model and specification searches are discussed. As an example, we construct leading indicators for inflation and GDP growth in the Euro area using G-7 information.
Resumo:
We argue that the main barrier to an integrated international interbankmarket is the existence of asymmetric information between differentcountries, which may prevail in spite of monetary integration or successfulcurrency pegging. In order to address this issue, we study the scope forinternational interbank market integration with unsecured lending whencross-country information is noisy. We find not only that an equilibriumwith integrated markets need not always exist, but also that when it does,the integrated equilibrium may coexist with one of interbank marketsegmentation. Therefore, market deregulation, per se, does not guaranteethe emergence of an integrated interbank market. The effect of a repo marketwhich, a priori, was supposed to improve efficiency happens to be morecomplex: it reduces interest rate spreads and improves upon the segmentationequilibrium, but\ it may destroy the unsecured integrated equilibrium, sincethe repo market will attract the best borrowers. The introduction of othertransnational institutional arrangements, such as multinational banking,correspondent banking and the existence of "too-big-to-fail" banks mayreduce cross country interest spreads and provide more insurance againstcountry wide liquidity shocks. Still, multinational banking, as theintroduction of repos, may threaten the integrated interbank marketequilibrium.
Resumo:
It is common in econometric applications that several hypothesis tests arecarried out at the same time. The problem then becomes how to decide whichhypotheses to reject, accounting for the multitude of tests. In this paper,we suggest a stepwise multiple testing procedure which asymptoticallycontrols the familywise error rate at a desired level. Compared to relatedsingle-step methods, our procedure is more powerful in the sense that itoften will reject more false hypotheses. In addition, we advocate the useof studentization when it is feasible. Unlike some stepwise methods, ourmethod implicitly captures the joint dependence structure of the teststatistics, which results in increased ability to detect alternativehypotheses. We prove our method asymptotically controls the familywise errorrate under minimal assumptions. We present our methodology in the context ofcomparing several strategies to a common benchmark and deciding whichstrategies actually beat the benchmark. However, our ideas can easily beextended and/or modied to other contexts, such as making inference for theindividual regression coecients in a multiple regression framework. Somesimulation studies show the improvements of our methods over previous proposals. We also provide an application to a set of real data.
Resumo:
We construct an uncoupled randomized strategy of repeated play such that, if every player follows such a strategy, then the joint mixed strategy profiles converge, almost surely, to a Nash equilibrium of the one-shot game. The procedure requires very little in terms of players' information about the game. In fact, players' actions are based only on their own past payoffs and, in a variant of the strategy, players need not even know that their payoffs are determined through other players' actions. The procedure works for general finite games and is based on appropriate modifications of a simple stochastic learningrule introduced by Foster and Young.
Resumo:
This paper discusses the role of deterministic components in the DGP and in the auxiliaryregression model which underlies the implementation of the Fractional Dickey-Fuller (FDF) test for I(1) against I(d) processes with d [0, 1). This is an important test in many economic applications because I(d) processess with d < 1 are mean-reverting although, when 0.5 = d < 1, like I(1) processes, they are nonstationary. We show how simple is the implementation of the FDF in these situations, and argue that it has better properties than LM tests. A simple testing strategy entailing only asymptotically normally distributedtests is also proposed. Finally, an empirical application is provided where the FDF test allowing for deterministic components is used to test for long-memory in the per capita GDP of several OECD countries, an issue that has important consequences to discriminate between growth theories, and on which there is some controversy.
Resumo:
This work studies the organization of less-than-truckload trucking from a contractual point of view. We show that the huge number of owner-operators working in the industry hides a much less fragmented reality. Most of those owner-operators are quasi-integrated in higher organizational structures. This hybrid form is generally more efficient than vertical integration because, in the Spanish institutional environment, it lessens serious moral hazard problems, related mainly to the use of the vehicles, and makes it possible to reach economies of scale and density. Empirical evidence suggests that what leads organizations to vertically integrate is not the presence of such economies but hold-up problems, related to the existence of specific assets. Finally, an international comparison hints that institutional constraints are able to explain differences in the evolution of vertical integration across countries.