143 resultados para INTERACTING ELECTRONS
Resumo:
El objetivo principal de este proyecto es la caracterización de la microcuenca la Jabonera (Estelí, Nicaragua) enfatizando el agua como factor clave que conecta todos los elementos que interaccionan en la microcuenca y que, además delimita el área de estudio. El trabajo de campo ha consistido básicamente en la georeferenciación de los puntos de interés, la realización de encuestas a la población y la evaluación de las fuentes de agua y del agua del río mediante análisis fisicoquímicos. En el procesamiento de la información se ha elaborado cartografía temática mediante la herramienta SIG que ha servido de soporte para la interpretación de los resultados. Las características morfométricas y biofísicas favorecen que el agua precipitada se pierda rápidamente por escorrentía superficial con una tendencia moderada a crecidas e inundaciones. El agua infiltrada circula rápidamente por fracturas del material geológico con tiempos de tránsito cortos, y además, el área de recarga de los nacientes es local por lo que las fuentes son especialmente vulnerables a períodos de sequía y a la contaminación en su entorno cercano. El estudio de usos del suelo junto con la realización de análisis del agua ha permitido determinar que los agroquímicos son la principal fuente potencial de contaminación del agua en la microcuenca. Los resultados obtenidos muestran la necesidad de llevar a cabo una gestión integrada del territorio que garantice un desarrollo socioambiental sostenible.
Resumo:
La recerca va analitzar la interacció entre innovació tecnològica, canvi organitzatiu i transformació dels serveis públics i els processos polítics a l'Ajuntament de Barcelona. Prenent com a hipòtesi de partida l'aparició d'un possible model Barcelona II (que entenem que és paral·lel al model Barcelona, un exemple internacionalment reconegut de combinació de polítiques urbanes), es van estudiar les transformacions internes del consistori barceloní vinculades amb l'ús innovador de les tecnologies de la informació i la comunicació i es van relacionar amb el conjunt de canvis socials i polítics que interaccionaven amb aquest procés.
Resumo:
La recerca va analitzar la interacció entre innovació tecnològica, canvi organitzatiu i transformació dels serveis públics i els processos polítics a l'Ajuntament de Barcelona. Prenent com a hipòtesi de partida l'aparició d'un possible model Barcelona II (que entenem que és paral·lel al model Barcelona, un exemple internacionalment reconegut de combinació de polítiques urbanes), es van estudiar les transformacions internes del consistori barceloní vinculades amb l'ús innovador de les tecnologies de la informació i la comunicació i es van relacionar amb el conjunt de canvis socials i polítics que interaccionaven amb aquest procés.
Resumo:
One of the unresolved questions of modern physics is the nature of Dark Matter. Strong experimental evidences suggest that the presence of this elusive component in the energy budget of the Universe is quite significant, without, however, being able to provide conclusive information about its nature. The most plausible scenario is that of weakly interacting massive particles (WIMPs), that includes a large class of non-baryonic Dark Matter candidates with a mass typically between few tens of GeV and few TeVs, and a cross section of the order of weak interactions. Search for Dark Matter particles using very high energy gamma-ray Cherenkov telescopes is based on the model that WIMPs can self-annihilate, leading to production of detectable species, like photons. These photons are very energetic, and since unreflected by the Universe's magnetic fields, they can be traced straight to the source of their creation. The downside of the approach is a great amount of background radiation, coming from the conventional astrophysical objects, that usually hides clear signals of the Dark Matter particle interactions. That is why good choice of the observational candidates is the crucial factor in search for Dark Matter. With MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov Telescopes), a two-telescope ground-based system located in La Palma, Canary Islands, we choose objects like dwarf spheroidal satellite galaxies of the Milky Way and galaxy clusters for our search. Our idea is to increase chances for WIMPs detection by pointing to objects that are relatively close, with great amount of Dark Matter and with as-little-as-possible pollution from the stars. At the moment, several observation projects are ongoing and analyses are being performed.
Resumo:
There are two principal chemical concepts that are important for studying the naturalenvironment. The first one is thermodynamics, which describes whether a system is atequilibrium or can spontaneously change by chemical reactions. The second main conceptis how fast chemical reactions (kinetics or rate of chemical change) take place wheneverthey start. In this work we examine a natural system in which both thermodynamics andkinetic factors are important in determining the abundance of NH+4 , NO−2 and NO−3 insuperficial waters. Samples were collected in the Arno Basin (Tuscany, Italy), a system inwhich natural and antrophic effects both contribute to highly modify the chemical compositionof water. Thermodynamical modelling based on the reduction-oxidation reactionsinvolving the passage NH+4 -& NO−2 -& NO−3 in equilibrium conditions has allowed todetermine the Eh redox potential values able to characterise the state of each sample and,consequently, of the fluid environment from which it was drawn. Just as pH expressesthe concentration of H+ in solution, redox potential is used to express the tendency of anenvironment to receive or supply electrons. In this context, oxic environments, as thoseof river systems, are said to have a high redox potential because O2 is available as anelectron acceptor.Principles of thermodynamics and chemical kinetics allow to obtain a model that oftendoes not completely describe the reality of natural systems. Chemical reactions may indeedfail to achieve equilibrium because the products escape from the site of the rectionor because reactions involving the trasformation are very slow, so that non-equilibriumconditions exist for long periods. Moreover, reaction rates can be sensitive to poorly understoodcatalytic effects or to surface effects, while variables as concentration (a largenumber of chemical species can coexist and interact concurrently), temperature and pressurecan have large gradients in natural systems. By taking into account this, data of 91water samples have been modelled by using statistical methodologies for compositionaldata. The application of log–contrast analysis has allowed to obtain statistical parametersto be correlated with the calculated Eh values. In this way, natural conditions in whichchemical equilibrium is hypothesised, as well as underlying fast reactions, are comparedwith those described by a stochastic approach
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
This paper proposes to promote autonomy in digital ecosystems so that it provides agents with information to improve the behavior of the digital ecosystem in terms of stability. This work proposes that, in digital ecosystems, autonomous agents can provide fundamental services and information. The final goal is to run the ecosystem, generate novel conditions and let agents exploit them. A set of evaluation measures must be defined as well. We want to provide an outline of some global indicators, such as heterogeneity and diversity, and establish relationships between agent behavior and these global indicators to fully understand interactions between agents, and to understand the dependence and autonomy relations that emerge between the interacting agents. Individual variations, interaction dependencies, and environmental factors are determinants of autonomy that would be considered. The paper concludes with a discussion of situations when autonomy is a milestone
Resumo:
One of the major problems when using non-dedicated volunteer resources in adistributed network is the high volatility of these hosts since they can go offlineor become unavailable at any time without control. Furthermore, the use ofvolunteer resources implies some security issues due to the fact that they aregenerally anonymous entities which we know nothing about. So, how to trustin someone we do not know?.Over the last years an important number of reputation-based trust solutionshave been designed to evaluate the participants' behavior in a system.However, most of these solutions are addressed to P2P and ad-hoc mobilenetworks that may not fit well with other kinds of distributed systems thatcould take advantage of volunteer resources as recent cloud computinginfrastructures.In this paper we propose a first approach to design an anonymous reputationmechanism for CoDeS [1], a middleware for building fogs where deployingservices using volunteer resources. The participants are reputation clients(RC), a reputation authority (RA) and a certification authority (CA). Users needa valid public key certificate from the CA to register to the RA and obtain thedata needed to participate into the system, as now an opaque identifier thatwe call here pseudonym and an initial reputation value that users provide toother users when interacting together. The mechanism prevents not only themanipulation of the provided reputation values but also any disclosure of theusers' identities to any other users or authorities so the anonymity isguaranteed.
Resumo:
The main objective of this paper aims at developing a methodology that takes into account the human factor extracted from the data base used by the recommender systems, and which allow to resolve the specific problems of prediction and recommendation. In this work, we propose to extract the user's human values scale from the data base of the users, to improve their suitability in open environments, such as the recommender systems. For this purpose, the methodology is applied with the data of the user after interacting with the system. The methodology is exemplified with a case study
Resumo:
The occurrence of negative values for Fukui functions was studied through the electronegativity equalization method. Using algebraic relations between Fukui functions and different other conceptual DFT quantities on the one hand and the hardness matrix on the other hand, expressions were obtained for Fukui functions for several archetypical small molecules. Based on EEM calculations for large molecular sets, no negative Fukui functions were found
Resumo:
A select-divide-and-conquer variational method to approximate configuration interaction (CI) is presented. Given an orthonormal set made up of occupied orbitals (Hartree-Fock or similar) and suitable correlation orbitals (natural or localized orbitals), a large N-electron target space S is split into subspaces S0,S1,S2,...,SR. S0, of dimension d0, contains all configurations K with attributes (energy contributions, etc.) above thresholds T0={T0egy, T0etc.}; the CI coefficients in S0 remain always free to vary. S1 accommodates KS with attributes above T1≤T0. An eigenproblem of dimension d0+d1 for S0+S 1 is solved first, after which the last d1 rows and columns are contracted into a single row and column, thus freezing the last d1 CI coefficients hereinafter. The process is repeated with successive Sj(j≥2) chosen so that corresponding CI matrices fit random access memory (RAM). Davidson's eigensolver is used R times. The final energy eigenvalue (lowest or excited one) is always above the corresponding exact eigenvalue in S. Threshold values {Tj;j=0, 1, 2,...,R} regulate accuracy; for large-dimensional S, high accuracy requires S 0+S1 to be solved outside RAM. From there on, however, usually a few Davidson iterations in RAM are needed for each step, so that Hamiltonian matrix-element evaluation becomes rate determining. One μhartree accuracy is achieved for an eigenproblem of order 24 × 106, involving 1.2 × 1012 nonzero matrix elements, and 8.4×109 Slater determinants
Resumo:
A topological analysis of intracule and extracule densities and their Laplacians computed within the Hartree-Fock approximation is presented. The analysis of the density distributions reveals that among all possible electron-electron interactions in atoms and between atoms in molecules only very few are located rigorously as local maxima. In contrast, they are clearly identified as local minima in the topology of Laplacian maps. The conceptually different interpretation of intracule and extracule maps is also discussed in detail. An application example to the C2H2, C2H4, and C2H6 series of molecules is presented
Resumo:
The electron localization function (ELF) has been proven so far a valuable tool to determine the location of electron pairs. Because of that, the ELF has been widely used to understand the nature of the chemical bonding and to discuss the mechanism of chemical reactions. Up to now, most applications of the ELF have been performed with monodeterminantal methods and only few attempts to calculate this function for correlated wave functions have been carried out. Here, a formulation of ELF valid for mono- and multiconfigurational wave functions is given and compared with previous recently reported approaches. The method described does not require the use of the homogeneous electron gas to define the ELF, at variance with the ELF definition given by Becke. The effect of the electron correlation in the ELF, introduced by means of configuration interaction with singles and doubles calculations, is discussed in the light of the results derived from a set of atomic and molecular systems
Resumo:
Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed
Resumo:
A procedure based on quantum molecular similarity measures (QMSM) has been used to compare electron densities obtained from conventional ab initio and density functional methodologies at their respective optimized geometries. This method has been applied to a series of small molecules which have experimentally known properties and molecular bonds of diverse degrees of ionicity and covalency. Results show that in most cases the electron densities obtained from density functional methodologies are of a similar quality than post-Hartree-Fock generalized densities. For molecules where Hartree-Fock methodology yields erroneous results, the density functional methodology is shown to yield usually more accurate densities than those provided by the second order Møller-Plesset perturbation theory