34 resultados para HYDROGEN PHOSPHATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping protein that is present in virtually all organisms, where it performs metabolic functions essential for survival. GAPDH plays an essential role in the process of energy production, and is also involved in numerous biological processes. GAPDH belongs to a subset of proteins called moonlighting proteins, in which different functions are associated with a single polypeptide chain. The multifunctionality of GAPDH has been described in pathogenic and probiotic microorganisms, in mammals and in plants. In this review, we summarize the moonlighting role of GAPDH in bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping protein that is present in virtually all organisms, where it performs metabolic functions essential for survival. GAPDH plays an essential role in the process of energy production, and is also involved in numerous biological processes. GAPDH belongs to a subset of proteins called moonlighting proteins, in which different functions are associated with a single polypeptide chain. The multifunctionality of GAPDH has been described in pathogenic and probiotic microorganisms, in mammals and in plants. In this review, we summarize the moonlighting role of GAPDH in bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping protein that is present in virtually all organisms, where it performs metabolic functions essential for survival. GAPDH plays an essential role in the process of energy production, and is also involved in numerous biological processes. GAPDH belongs to a subset of proteins called moonlighting proteins, in which different functions are associated with a single polypeptide chain. The multifunctionality of GAPDH has been described in pathogenic and probiotic microorganisms, in mammals and in plants. In this review, we summarize the moonlighting role of GAPDH in bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of hydrogen desorption from amorphous silicon (ɑ-Si) nanoparticles grown by plasmaenhanced chemical vapor deposition (PECVD) has been analyzed by differential scanning calorimetry (DSC), mass spectrometry, and infrared spectroscopy, with the aim of quantifying the energy exchanged. Two exothermic peaks centered at 330 and 410 °C have been detected with energies per H atom of about 50 meV. This value has been compared with the results of theoretical calculations and is found to agree with the dissociation energy of Si-H groups of about 3.25 eV per H atom, provided that the formation energy per dangling bond in ɑ-Si is about 1.15 eV. It is shown that this result is valid for ɑ-Si:H films, too