40 resultados para HAMILTONIAN-FORMULATION
Resumo:
The magnetic coupling constant of selected cuprate superconductor parent compounds has been determined by means of embedded cluster model and periodic calculations carried out at the same level of theory. The agreement between both approaches validates the cluster model. This model is subsequently employed in state-of-the-art configuration interaction calculations aimed to obtain accurate values of the magnetic coupling constant and hopping integral for a series of superconducting cuprates. Likewise, a systematic study of the performance of different ab initio explicitly correlated wave function methods and of several density functional approaches is presented. The accurate determination of the parameters of the t-J Hamiltonian has several consequences. First, it suggests that the appearance of high-Tc superconductivity in existing monolayered cuprates occurs with J/t in the 0.20¿0.35 regime. Second, J/t=0.20 is predicted to be the threshold for the existence of superconductivity and, third, a simple and accurate relationship between the critical temperatures at optimum doping and these parameters is found. However, this quantitative electronic structure versus Tc relationship is only found when both J and t are obtained at the most accurate level of theory.
Resumo:
Triheptanoin-enriched diets have been successfully used in the experimental treatment of various metabolic disorders. Maximal therapeutic effect is achieved in the context of a ketogenic diet where triheptanoin oil provides 3040% of the daily caloric intake. However, pre-clinical studies using triheptanoin-rich diets are hindered by the difficulty of administering to laboratory animals as a solid foodstuff. In the present study, we successfully synthesized triheptanoin to the highest standards of purity from glycerol and heptanoic acid, using sulfonated charcoal as a catalyst. Triheptanoin oil was then formulated as a solid, stable and palatable preparation using a ketogenic base and a combination of four commercially available formulation agents: hydrophilic fumed silica, hydrophobic fumed silica, microcrystalline cellulose, and talc. Diet compliance and safety was tested on C57Bl/6 mice over a 15-week period, comparing overall status and body weight change. Practical applications: This work provides a complete description of (i) an efficient and cost-effective synthesis of triheptanoin and (ii) its formulation as a solid, stable, and palatable ketogenic diet (triheptanoin-rich; 39% of the caloric intake) for rodents. Triheptanoin-rich diets will be helpful on pre-clinical experiments testing the therapeutic efficacy of triheptanoin in different rodent models of human diseases. In addition, using the same solidification procedure, other oils could be incorporated into rodent ketogenic diet to study their dosage and long-term effects on mammal health and development. This approach could be extremely valuable as ketogenic diet is widely used clinically for epilepsy treatment.
Resumo:
Triheptanoin-enriched diets have been successfully used in the experimental treatment of various metabolic disorders. Maximal therapeutic effect is achieved in the context of a ketogenic diet where triheptanoin oil provides 3040% of the daily caloric intake. However, pre-clinical studies using triheptanoin-rich diets are hindered by the difficulty of administering to laboratory animals as a solid foodstuff. In the present study, we successfully synthesized triheptanoin to the highest standards of purity from glycerol and heptanoic acid, using sulfonated charcoal as a catalyst. Triheptanoin oil was then formulated as a solid, stable and palatable preparation using a ketogenic base and a combination of four commercially available formulation agents: hydrophilic fumed silica, hydrophobic fumed silica, microcrystalline cellulose, and talc. Diet compliance and safety was tested on C57Bl/6 mice over a 15-week period, comparing overall status and body weight change. Practical applications: This work provides a complete description of (i) an efficient and cost-effective synthesis of triheptanoin and (ii) its formulation as a solid, stable, and palatable ketogenic diet (triheptanoin-rich; 39% of the caloric intake) for rodents. Triheptanoin-rich diets will be helpful on pre-clinical experiments testing the therapeutic efficacy of triheptanoin in different rodent models of human diseases. In addition, using the same solidification procedure, other oils could be incorporated into rodent ketogenic diet to study their dosage and long-term effects on mammal health and development. This approach could be extremely valuable as ketogenic diet is widely used clinically for epilepsy treatment.
Resumo:
A Hamiltonian formalism is set up for nonlocal Lagrangian systems. The method is based on obtaining an equivalent singular first order Lagrangian, which is processed according to the standard Legendre transformation and then, the resulting Hamiltonian formalism is pulled back onto the phase space defined by the corresponding constraints. Finally, the standard results for local Lagrangians of any order are obtained as a particular case.
Resumo:
The material presented in the these notes covers the sessions Modelling of electromechanical systems, Passive control theory I and Passive control theory II of the II EURON/GEOPLEX Summer School on Modelling and Control of Complex Dynamical Systems.We start with a general description of what an electromechanical system is from a network modelling point of view. Next, a general formulation in terms of PHDS is introduced, and some of the previous electromechanical systems are rewritten in this formalism. Power converters, which are variable structure systems (VSS), can also be given a PHDS form.We conclude the modelling part of these lectures with a rather complex example, showing the interconnection of subsystems from several domains, namely an arrangement to temporally store the surplus energy in a section of a metropolitan transportation system based on dc motor vehicles, using either arrays of supercapacitors or an electric poweredflywheel. The second part of the lectures addresses control of PHD systems. We first present the idea of control as power connection of a plant and a controller. Next we discuss how to circumvent this obstacle and present the basic ideas of Interconnection and Damping Assignment (IDA) passivity-based control of PHD systems.
Resumo:
The SeDeM Diagram Expert System has been used to study excipients, Captopril and designed formulations for their galenic characterization and to ascertain the critical points of the formula affecting product quality to obtain suitable formulations of Captopril Direct Compression SR Matrix Tablets. The application of the Sedem Diagram Expert System enables selecting excipients with in order to optimize the formula in the preformulation and formulation studies. The methodology is based on the implementation of ICH Q8, establishing the design space of the formula with the use of experiment design, using the parameters of the SeDeM Diagram Expert System as system responses.
Resumo:
Triheptanoin-enriched diets have been successfully used in the experimental treatment of various metabolic disorders. Maximal therapeutic effect is achieved in the context of a ketogenic diet where triheptanoin oil provides 30-40% of the daily caloric intake. However, pre-clinical studies using triheptanoin-rich diets are hindered by the difficulty of administering to laboratory animals as a solid foodstuff. In the present study, we successfully synthesized triheptanoin to the highest standards of purity from glycerol and heptanoic acid, using sulfonated charcoal as a catalyst. Triheptanoin oil was then formulated as a solid, stable and palatable preparation using a ketogenic base and a combination of four commercially available formulation agents: hydrophilic fumed silica, hydrophobic fumed silica, microcrystalline cellulose, and talc. Diet compliance and safety was tested on C57Bl/6 mice over a 15-week period, comparing overall status and body weight change. Practical applications: This work provides a complete description of (i) an efficient and cost-effective synthesis of triheptanoin and (ii) its formulation as a solid, stable, and palatable ketogenic diet (triheptanoin-rich; 39% of the caloric intake) for rodents. Triheptanoin-rich diets will be helpful on pre-clinical experiments testing the therapeutic efficacy of triheptanoin in different rodent models of human diseases. In addition, using the same solidification procedure, other oils could be incorporated into rodent ketogenic diet to study their dosage and long-term effects on mammal health and development. This approach could be extremely valuable as ketogenic diet is widely used clinically for epilepsy treatment.
Resumo:
The performance of natural extracts obtained from underutilized and residual vegetal and macroalgal biomass processed with food-grade green solvents was compared with that of commercial antioxidants. Selected extracts were obtained from two terrestrial sources: winery byproducts concentrate (WBC) and chestnut burs hydrothermally fractionated extract (CBAE), and from two underutilized seaweeds: Sargassum muticum extracts, either extracted with ethanol (SmEE) or after alginate extraction and hydrothermal fractionation (SmAE) and from Ulva lactuca processed by mild acid extraction and membrane concentration (UlAE). These extracts showed in vitro antioxidant properties comparable to commercial antioxidants and were safe for topical use based on the absence of skin-irritant effects at 0.1% on reconstructed human tissues. The stability of several cosmetic model emulsions was assessed during accelerated oxidation assays. The incorporation of natural extracts produced from renewable underutilized resources at 0.4-0.5% in an oil-in-water emulsions reduced lipid oxidation during storage.
Resumo:
Triheptanoin-enriched diets have been successfully used in the experimental treatment of various metabolic disorders. Maximal therapeutic effect is achieved in the context of a ketogenic diet where triheptanoin oil provides 30-40% of the daily caloric intake. However, pre-clinical studies using triheptanoin-rich diets are hindered by the difficulty of administering to laboratory animals as a solid foodstuff. In the present study, we successfully synthesized triheptanoin to the highest standards of purity from glycerol and heptanoic acid, using sulfonated charcoal as a catalyst. Triheptanoin oil was then formulated as a solid, stable and palatable preparation using a ketogenic base and a combination of four commercially available formulation agents: hydrophilic fumed silica, hydrophobic fumed silica, microcrystalline cellulose, and talc. Diet compliance and safety was tested on C57Bl/6 mice over a 15-week period, comparing overall status and body weight change. Practical applications: This work provides a complete description of (i) an efficient and cost-effective synthesis of triheptanoin and (ii) its formulation as a solid, stable, and palatable ketogenic diet (triheptanoin-rich; 39% of the caloric intake) for rodents. Triheptanoin-rich diets will be helpful on pre-clinical experiments testing the therapeutic efficacy of triheptanoin in different rodent models of human diseases. In addition, using the same solidification procedure, other oils could be incorporated into rodent ketogenic diet to study their dosage and long-term effects on mammal health and development. This approach could be extremely valuable as ketogenic diet is widely used clinically for epilepsy treatment.