40 resultados para Glass-fibre Reinforced Cement
Resumo:
p-toluensulfonate doped polypyrrole ~PPy!, undergoes an electric-field induced reversible transition from an insulating state to a highly conductive one. The spatially average field can be as small as 200 V/cm, when the temperature of the sample is below 20 K. The applied electric field leads to a sharp jump in the value of the current to a value which is nearly five orders of magnitude higher than before. When the applied electric field is reduced to below a critical value, the system switches back to a low conductive state. The effect is reversible, symmetric in voltage, and reproducible for different samples. The switching is, we believe, an electronic glass melting transition and it is due to the disordered, highly charged granular nature of PPy.
Resumo:
The purpose of the study was to evaluate the shear bond strength of stainless steel orthodontic brackets directly bonded to extracted human premolar teeth. Fifty teeth were randomly divided into ¿ve groups: (1) System One (chemically cured composite resin), (2) Light Bond (light-cured composite resin), (3) Vivaglass Cem (self-curing glass ionomer cement), (4) Fuji Ortho LC (light-cured glass ionomer cement) used after 37% orthophosphoric acid¿etching of enamel (5) Fuji Ortho LC without orthophosphoric acid¿etching. The brackets were placed on the buccal and lingual surfaces of each tooth, and the specimens were stored in distilled water (24 hours) at 378C and thermocycled. Teeth were mounted on acrylic block frames, and brackets were debonded using an Instron machine. Shear bond strength values at fracture (Nw)were recorded. ANOVA and Student-Newman-Keuls multiple comparison tests were performed (P , .05). Bonding failure site was recorded by stereomicroscope and analyzed by Chi-square test, selected specimens of each group were observed by scanning electron microscope. System One attained the highest bond strength. Light Bond and Fuji Ortho LC, when using an acid-etching technique, obtained bond strengths that were within the range of estimated bond strength values for successful clinical bonding. Fuji Ortho LC and Vivaglass Cem left an almost clean enamel surface after debracketing.
Resumo:
A Comment on the Letter by A. Knoll, D. Wiesmann, B. Gotsmann, and U. Duerig, published in Physical Review Letter, 2009, vol. 102, p.117801
Resumo:
We present computer simulations of a simple bead-spring model for polymer melts with intramolecular barriers. By systematically tuning the strength of the barriers, we investigate their role on the glass transition. Dynamic observables are analyzed within the framework of the mode coupling theory (MCT). Critical nonergodicity parameters, critical temperatures, and dynamic exponents are obtained from consistent fits of simulation data to MCT asymptotic laws. The so-obtained MCT λ-exponent increases from standard values for fully flexible chains to values close to the upper limit for stiff chains. In analogy with systems exhibiting higher-order MCT transitions, we suggest that the observed large λ-values arise form the interplay between two distinct mechanisms for dynamic arrest: general packing effects and polymer-specific intramolecular barriers. We compare simulation results with numerical solutions of the MCT equations for polymer systems, within the polymer reference interaction site model (PRISM) for static correlations. We verify that the approximations introduced by the PRISM are fulfilled by simulations, with the same quality for all the range of investigated barrier strength. The numerical solutions reproduce the qualitative trends of simulations for the dependence of the nonergodicity parameters and critical temperatures on the barrier strength. In particular, the increase in the barrier strength at fixed density increases the localization length and the critical temperature. However the qualitative agreement between theory and simulation breaks in the limit of stiff chains. We discuss the possible origin of this feature.
Resumo:
El proyecto GEOCISTEM intentó hallar un substituto vítreo alcalino natural, económico y viable industrialmente, a los reactivos químicos empleados en un cemento silicatado patentado. Se realizó una completa prospección de los recursos consistentes en rocas volcánicas vítreas ricas en álcalis (Na2O+K2O > 10 %, K>>Na), preferentemente fragmentarias (piroclásticas) en diferentes regiones volcánicas europeas (Italia, Grecia, España). Unas 100 muestras fueron analizadas (elementos mayores mediante FRX; caracterización, petrográfica y mediante DRX) y 10 fueron empleadas en la fabricación (en laboratorio y escala semiindustrial) del cemento silicatado. Se obtuvo toda una familia de cementos (diez) con alta resistencia a la compresión (50-60 MPa a los 28 días), resistentes a la corrosión y que no desarrollan reacción alcalina-agregados, muy adecuados para el encapsulado de residuos especiales; todo ello con una notable reducción del consumo de energía en el proceso de fabricación y en el consumo de silicato de K (hasta 1/3-1/4 del requerido en la patente original). El estudio químico-mineralógico desarrollado demuestra que la formulación original del cemento era excesivamente restrictiva, y que la mineralogía producida en los procesos de desvitrificación naturales controla estrictamente el rendimiento de estos nuevos recursos durante el proceso de fabricación del cemento. Las rocas anhidras con feldespatos alcalinos y fases silíceas cristalinas predominantes obtenidas a temperaturas inferiores a las magmáticas (desvitrificación) son más interesantes que las zeolitizadas naturalmente, ya que no requieren calcinación previa con el consiguiente ahorro energético.
Resumo:
This study analyzes the capillarity and fibre-type distribution of six locomotory muscles of gulls. The morphological basis and the oxygen supply characteristics of the skeletal muscle of a species with a marked pattern of gliding flight are established, thus contributing to a better understanding of the physiology of a kind of flight with low energetic requirements. The four wing muscles studied (scapulotriceps, pectoralis, scapulohumeralis, and extensor metacarpi) exhibited higher percentages of fast oxidative glycolytic fibres (>70%) and lower percentages of slow oxidative fibres (<16%) than the muscles involved in nonflight locomotion (gastrocnemius and iliotibialis). Capillary densities ranged from 816 to 1,233 capillaries mm(-2), having the highest value in the pectoralis. In this muscle, the fast oxidative glycolytic fibres had moderate staining for succinate dehydrogenase and relatively large fibre sizes, as deduced from the low fibre densities (589-665 fibres mm(-2)). All these findings are seen as an adaptive response for gliding, when the wing is held outstretched by isometric contractions. The leg muscles studied included a considerable population of slow oxidative fibres (>14% in many regions), which suggests that they are adapted to postural activities. Regional variations in the relative distributions of fibre types in muscle gastrocnemius may reflect different functional demands placed on this muscle during terrestrial and aquatic locomotion. The predominance of oxidative fibres and capillary densities under 1,000 capillaries mm(-2) in leg muscles is probably a consequence of an adaptation for slow swimming and maintenance of the posture on land rather than for other locomotory capabilities, such as endurance or sprint activities.
Resumo:
In the 1940s, when the Governor of Puerto Rico was appointed by the US President and the Puerto Rican government was answerable only to the US Federal government, a large state-owned enterprise (SOE) sector was established on the island. Public services such as water, transportation and energy were nationalized, and several new manufacturing SOEs were created to produce cement, glass, shoes, paper and chalkboard, and clay products. These enterprises were created and managed by government-owned corporations. Later on, between 1948 and 1950, under the island’s first elected Governor, the government sold these SOEs to private groups. This paper documents both the creation and the privatization of the SOE sector in Puerto Rico, and analyzes the role played by ideology, political interests, and economic concerns in the decision to privatize them. Whereas ideological factors might have played a significant role in the building of the SOE sector, we find that privatization was driven basically by economic factors, such as the superior efficiency of private firms in the sectors where the SOEs operated, and by the desire to attract private industrial investment to the Puerto Rican economy.
Resumo:
This article presents the results of a study of the efficiency of silanation process of calcium phosphate glasses particles and its effect on the bioactivity behavior of glasspoly( methyl methacrylate) (PMMA) composites. Two different calcium phosphate glasses: 44.5CaO-44.5P2O5-11Na2O (BV11) and 44.5CaO-44.5P2O5-6Na2O-5TiO2 (G5) were synthesized and treated with silane coupling agent. The glasses obtained were characterized by Microprobe and BET while the efficiency of silanation process was determined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Thermal Analysis (DTA and TG)techniques. The content of coupling agent chemically tightly bond to the silanated glasses ascended to 1.69 6 0.02 wt % for BV11sil glass and 0.93 6 0.01 wt % for G5sil glass. The in vitro bioactivity test carried out in Simulated Body Fluid (SBF) revealed certain bioactive performance with the use of both silanated glasses in a 30% (by weight) as filler of the PMMA composites because of a superficial deposition of an apatite-like layer with low content of CO3 22 and HPO4 22 in its structure after soaking for 30 days occurred. VC 2013 Wiley Periodicals,Inc. J Biomed Mater Res Part B: Appl Biomater 00B: 000-000, 2013.
Resumo:
One of the most relevant properties of composite materials to be considered is stiffness. Fiberglass has been used traditionally as a fibrous reinforcing element when stiff materials are required. However, natural fibers are been exploited as replacements for synthetic fibers to satisfy environmental concerns. Among the different natural fibers, wood fibers show the combination of relatively high aspect ratio, good specific stiffness and strength, low density, low cost, and less variability than other natural fibers of such those from annual crops. In this work, composites from polypropylene and stone groundwood fibers from softwood were prepared and mechanically characterized under tensile loads. The Young’s moduli of the ensuing composites were analyzed and their micromechanics aspects evaluated. The reinforcing effect of stone groundwood fibers was compared to that of conventional reinforcement such fiberglass. The Halpin-Tsai model with the modification proposed by Tsai-Pagano accounted fairly for the behavior of PP composites reinforced with stone groundwood fibers. It was also demonstrated that the aspect ratio of the reinforcement plays a role in the Young’s modulus of injection molded specimens
Resumo:
The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetrically etched glass plates, combines exact optical fiber alignment, low laser damage threshold and high imaging quality with the possibility of several microfluidic inlet and outlet channels. We show the utility of such a custombuilt optical stretcher glass chip by measuring and sorting single cells in a heterogeneous population based on their different mechanical properties and verify sorting accuracy by simultaneous fluorescence detection. This offers new possibilities of exact characterization and sorting of small populations based on rheological properties for biological and biomedical applications.