98 resultados para General relativity and gravitation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive the back reaction on the gravitational field of a straight cosmic string during its formation due to the gravitational coupling of the string to quantum matter fields. A very simple model of string formation is considered. The gravitational field of the string is computed in the linear approximation. The vacuum expectation value of the stress tensor of a massless scalar quantum field coupled to the string gravitational field is computed to one loop order. Finally, the back-reaction effect is obtained by solving perturbatively the semiclassical Einsteins equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study spacetime diffeomorphisms in the Hamiltonian and Lagrangian formalisms of generally covariant systems. We show that the gauge group for such a system is characterized by having generators which are projectable under the Legendre map. The gauge group is found to be much larger than the original group of spacetime diffeomorphisms, since its generators must depend on the lapse function and shift vector of the spacetime metric in a given coordinate patch. Our results are generalizations of earlier results by Salisbury and Sundermeyer. They arise in a natural way from using the requirement of equivalence between Lagrangian and Hamiltonian formulations of the system, and they are new in that the symmetries are realized on the full set of phase space variables. The generators are displayed explicitly and are applied to the relativistic string and to general relativity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we examine in detail the implementation, with its associated difficulties, of the Killing conditions and gauge fixing into the variational principle formulation of Bianchi-type cosmologies. We address problems raised in the literature concerning the Lagrangian and the Hamiltonian formulations: We prove their equivalence, make clear the role of the homogeneity preserving diffeomorphisms in the phase space approach, and show that the number of physical degrees of freedom is the same in the Hamiltonian and Lagrangian formulations. Residual gauge transformations play an important role in our approach, and we suggest that Poincaré transformations for special relativistic systems can be understood as residual gauge transformations. In the Appendixes, we give the general computation of the equations of motion and the Lagrangian for any Bianchi-type vacuum metric and for spatially homogeneous Maxwell fields in a nondynamical background (with zero currents). We also illustrate our counting of degrees of freedom in an appendix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a general class of solutions to Einstein's field equations with two spacelike commuting Killing vectors by assuming the separation of variables of the metric components. The solutions can be interpreted as inhomogeneous cosmological models. We show that the singularity structure of the solutions varies depending on the different particular choices of the parameters and metric functions. There exist solutions with a universal big-bang singularity, solutions with timelike singularities in the Weyl tensor only, solutions with singularities in both the Ricci and the Weyl tensors, and also singularity-free solutions. We prove that the singularity-free solutions have a well-defined cylindrical symmetry and that they are generalizations of other singularity-free solutions obtained recently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss reality conditions and the relation between spacetime diffeomorphisms and gauge transformations in Ashtekars complex formulation of general relativity. We produce a general theoretical framework for the stabilization algorithm for the reality conditions, which is different from Diracs method of stabilization of constraints. We solve the problem of the projectability of the diffeomorphism transformations from configuration-velocity space to phase space, linking them to the reality conditions. We construct the complete set of canonical generators of the gauge group in the phase space which includes all the gauge variables. This result proves that the canonical formalism has all the gauge structure of the Lagrangian theory, including the time diffeomorphisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The string model with N=2 world-sheet supersymmetry is approached via ghosts, Becchi-Rouet-Stora-Tyutin cohomology, and bosonization. Some amplitudes involving massless scalars and vectors are computed at the tree level. The constraints of locality on the spectrum are analyzed. An attempt is made to "decompactify" the model into a four-dimensional theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compute the influence action for a system perturbatively coupled to a linear scalar field acting as the environment. Subtleties related to divergences that appear when summing over all the modes are made explicit and clarified. Being closely connected with models used in the literature, we show how to completely reconcile the results obtained in the context of stochastic semiclassical gravity when using mode decomposition with those obtained by other standard functional techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Einstein-Maxwell theory, magnetic flux lines are "expelled" from a black hole as extremality is approached, in the sense that the component of the field strength normal to the horizon goes to zero. Thus, extremal black holes are found to exhibit the sort of ¿Meissner effect¿ which is characteristic of superconducting media. We review some of the evidence for this effect and present new evidence for it using recently found black hole solutions in string theory and Kaluza-Klein theory. We also present some new solutions, which arise naturally in string theory, which are non-superconducting extremal black holes. We present a nice geometrical interpretation of these effects derived by looking carefully at the higher dimensional configurations from which the lower dimensional black hole solutions are obtained. We show that other extremal solitonic objects in string theory (such as p-branes) can also display superconducting properties. In particular, we argue that the relativistic London equation will hold on the world volume of ¿light¿ superconducting p-branes (which are embedded in flat space), and that minimally coupled zero modes will propagate in the adS factor of the near-horizon geometries of "heavy," or gravitating, superconducting p-branes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent results in the literature concerning holography indicate that the thermodynamics of quantum gravity (at least with a negative cosmological constant) can be modeled by the large N thermodynamics of quantum field theory. We emphasize that this suggests a completely unitary evolution of processes in quantum gravity, including black hole formation and decay, and even more extreme examples involving topology change. As concrete examples which show that this correspondence holds even when the space-time is only locally asymptotically AdS, we compute the thermodynamical phase structure of the AdS-Taub-NUT and AdS-Taub-bolt spacetimes, and compare them to a (2+1)-dimensional conformal field theory (at large N) compactified on a squashed three-sphere and on the twisted plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compute the properties of a class of charged black holes in antide Sitter space-time, in diverse dimensions. These black holes are solutions of consistent Einstein-Maxwell truncations of gauged supergravities, which are shown to arise from the inclusion of rotation in the transverse space. We uncover rich thermodynamic phase structures for these systems, which display classic critical phenomena, including structures isomorphic to the van der WaalsMaxwell liquid-gas system. In that case, the phases are controlled by the universal cusp and swallowtail shapes familiar from catastrophe theory. All of the thermodynamics is consistent with field theory interpretations via holography, where the dual field theories can sometimes be found on the world volumes of coincident rotating branes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

rg model with A3 potential. The holographically dual field theories provide the description of the microscopic degrees of freedom which underlie all of the thermodynamics, as can be seen by examining the form of the microscopic fluctuations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"static" instanton, representing pair creation of critical bubbles¿a process somewhat analogous to thermal activation in flat space. In that case, the branes may stick together due to thermal symmetry restoration, and the pair creation rate depends exponentially on the ambient de Sitter temperature, switching off sharply as the temperature approaches zero. Such a static instanton may be well suited for the ¿saltatory¿ relaxation scenario proposed by Feng et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present supergravity solutions for 1/8-supersymmetric black supertubes with three charges and three dipoles. Their reduction to five dimensions yields supersymmetric black rings with regular horizons and two independent angular momenta. The general solution contains seven independent parameters and provides the first example of nonuniqueness of supersymmetric black holes. In ten dimensions, the solutions can be realized as D1-D5-P black supertubes. We also present a worldvolume construction of a supertube that exhibits three dipoles explicitly. This description allows an arbitrary cross section but captures only one of the angular momenta.