50 resultados para Fuzzy Set Theory
Resumo:
To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory, fourth-order Møller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+ 1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values
Resumo:
The level of ab initio theory which is necessary to compute reliable values for the static and dynamic (hyper)polarizabilities of three medium size π-conjugated organic nonlinear optical (NLO) molecules is investigated. With the employment of field-induced coordinates in combination with a finite field procedure, the calculations were made possible. It is stated that to obtain reasonable values for the various individual contributions to the (hyper)polarizability, it is necessary to include electron correlation. Based on the results, the convergence of the usual perturbation treatment for vibrational anharmonicity was examined
Resumo:
A conceptually new approach is introduced for the decomposition of the molecular energy calculated at the density functional theory level of theory into sum of one- and two-atomic energy components, and is realized in the "fuzzy atoms" framework. (Fuzzy atoms mean that the three-dimensional physical space is divided into atomic regions having no sharp boundaries but exhibiting a continuous transition from one to another.) The new scheme uses the new concept of "bond order density" to calculate the diatomic exchange energy components and gives them unexpectedly close to the values calculated by the exact (Hartree-Fock) exchange for the same Kohn-Sham orbitals
Resumo:
Recently, the surprising result that ab initio calculations on benzene and other planar arenes at correlated MP2, MP3, configuration interaction with singles and doubles (CISD), and coupled cluster with singles and doubles levels of theory using standard Pople’s basis sets yield nonplanar minima has been reported. The planar optimized structures turn out to be transition states presenting one or more large imaginary frequencies, whereas single-determinant-based methods lead to the expected planar minima and no imaginary frequencies. It has been suggested that such anomalous behavior can be originated by two-electron basis set incompleteness error. In this work, we show that the reported pitfalls can be interpreted in terms of intramolecular basis set superposition error (BSSE) effects, mostly between the C–H moieties constituting the arenes. We have carried out counterpoise-corrected optimizations and frequency calculations at the Hartree–Fock, B3LYP, MP2, and CISD levels of theory with several basis sets for a number of arenes. In all cases, correcting for intramolecular BSSE fixes the anomalous behavior of the correlated methods, whereas no significant differences are observed in the single-determinant case. Consequently, all systems studied are planar at all levels of theory. The effect of different intramolecular fragment definitions and the particular case of charged species, namely, cyclopentadienyl and indenyl anions, respectively, are also discussed
Resumo:
When continuous data are coded to categorical variables, two types of coding are possible: crisp coding in the form of indicator, or dummy, variables with values either 0 or 1; or fuzzy coding where each observation is transformed to a set of "degrees of membership" between 0 and 1, using co-called membership functions. It is well known that the correspondence analysis of crisp coded data, namely multiple correspondence analysis, yields principal inertias (eigenvalues) that considerably underestimate the quality of the solution in a low-dimensional space. Since the crisp data only code the categories to which each individual case belongs, an alternative measure of fit is simply to count how well these categories are predicted by the solution. Another approach is to consider multiple correspondence analysis equivalently as the analysis of the Burt matrix (i.e., the matrix of all two-way cross-tabulations of the categorical variables), and then perform a joint correspondence analysis to fit just the off-diagonal tables of the Burt matrix - the measure of fit is then computed as the quality of explaining these tables only. The correspondence analysis of fuzzy coded data, called "fuzzy multiple correspondence analysis", suffers from the same problem, albeit attenuated. Again, one can count how many correct predictions are made of the categories which have highest degree of membership. But here one can also defuzzify the results of the analysis to obtain estimated values of the original data, and then calculate a measure of fit in the familiar percentage form, thanks to the resultant orthogonal decomposition of variance. Furthermore, if one thinks of fuzzy multiple correspondence analysis as explaining the two-way associations between variables, a fuzzy Burt matrix can be computed and the same strategy as in the crisp case can be applied to analyse the off-diagonal part of this matrix. In this paper these alternative measures of fit are defined and applied to a data set of continuous meteorological variables, which are coded crisply and fuzzily into three categories. Measuring the fit is further discussed when the data set consists of a mixture of discrete and continuous variables.
Resumo:
Small sample properties are of fundamental interest when only limited data is avail-able. Exact inference is limited by constraints imposed by speci.c nonrandomizedtests and of course also by lack of more data. These e¤ects can be separated as we propose to evaluate a test by comparing its type II error to the minimal type II error among all tests for the given sample. Game theory is used to establish this minimal type II error, the associated randomized test is characterized as part of a Nash equilibrium of a .ctitious game against nature.We use this method to investigate sequential tests for the di¤erence between twomeans when outcomes are constrained to belong to a given bounded set. Tests ofinequality and of noninferiority are included. We .nd that inference in terms oftype II error based on a balanced sample cannot be improved by sequential sampling or even by observing counter factual evidence providing there is a reasonable gap between the hypotheses.
Resumo:
We test in the laboratory the potential of evolutionary dynamics as predictor of actual behavior. To this end, we propose an asymmetricgame -which we interpret as a borrowerlender relation-, study itsevolutionary dynamics in a random matching set-up, and tests itspredictions. The model provides conditions for the existence ofcredit markets and credit cycles. The theoretical predictions seemto be good approximations of the experimental results.
Resumo:
A biplot, which is the multivariate generalization of the two-variable scatterplot, can be used to visualize the results of many multivariate techniques, especially those that are based on the singular value decomposition. We consider data sets consisting of continuous-scale measurements, their fuzzy coding and the biplots that visualize them, using a fuzzy version of multiple correspondence analysis. Of special interest is the way quality of fit of the biplot is measured, since it is well-known that regular (i.e., crisp) multiple correspondence analysis seriously under-estimates this measure. We show how the results of fuzzy multiple correspondence analysis can be defuzzified to obtain estimated values of the original data, and prove that this implies an orthogonal decomposition of variance. This permits a measure of fit to be calculated in the familiar form of a percentage of explained variance, which is directly comparable to the corresponding fit measure used in principal component analysis of the original data. The approach is motivated initially by its application to a simulated data set, showing how the fuzzy approach can lead to diagnosing nonlinear relationships, and finally it is applied to a real set of meteorological data.
Resumo:
In earlier work, the present authors have shown that hardness profiles are less dependent on the level of calculation than energy profiles for potential energy surfaces (PESs) having pathological behaviors. At variance with energy profiles, hardness profiles always show the correct number of stationary points. This characteristic has been used to indicate the existence of spurious stationary points on the PESs. In the present work, we apply this methodology to the hydrogen fluoride dimer, a classical difficult case for the density functional theory methods
Resumo:
A static comparative study on set-solutions for cooperative TU games is carried out. The analysis focuses on studying the compatibility between two classical and reasonable properties introduced by Young (1985) in the context of single valued solutions, namely core-selection and coalitional monotonicity. As the main result, it is showed that coalitional monotonicity is not only incompatible with the core-selection property but also with the bargaining-selection property. This new impossibility result reinforces the tradeoff between these kinds of interesting and intuitive economic properties. Positive results about compatibility between desirable economic properties are given replacing the core selection requirement by the core-extension property.
Resumo:
This paper provides an axiomatic framework to compare the D-core (the set of undominatedimputations) and the core of a cooperative game with transferable utility. Theorem1 states that the D-core is the only solution satisfying projection consistency, reasonableness (from above), (*)-antimonotonicity, and modularity. Theorem 2 characterizes the core replacing (*)-antimonotonicity by antimonotonicity. Moreover, these axioms alsocharacterize the core on the domain of convex games, totally balanced games, balancedgames, and superadditive games
Resumo:
We extend the relativistic mean field theory model of Sugahara and Toki by adding new couplings suggested by modern effective field theories. An improved set of parameters is developed with the goal to test the ability of the models based on effective field theory to describe the properties of finite nuclei and, at the same time, to be consistent with the trends of Dirac-Brueckner-Hartree-Fock calculations at densities away from the saturation region. We compare our calculations with other relativistic nuclear force parameters for various nuclear phenomena.
Resumo:
In this Contribution we show that a suitably defined nonequilibrium entropy of an N-body isolated system is not a constant of the motion, in general, and its variation is bounded, the bounds determined by the thermodynamic entropy, i.e., the equilibrium entropy. We define the nonequilibrium entropy as a convex functional of the set of n-particle reduced distribution functions (n ? N) generalizing the Gibbs fine-grained entropy formula. Additionally, as a consequence of our microscopic analysis we find that this nonequilibrium entropy behaves as a free entropic oscillator. In the approach to the equilibrium regime, we find relaxation equations of the Fokker-Planck type, particularly for the one-particle distribution function.
Resumo:
This paper provides an axiomatic framework to compare the D-core (the set of undominatedimputations) and the core of a cooperative game with transferable utility. Theorem1 states that the D-core is the only solution satisfying projection consistency, reasonableness (from above), (*)-antimonotonicity, and modularity. Theorem 2 characterizes the core replacing (*)-antimonotonicity by antimonotonicity. Moreover, these axioms alsocharacterize the core on the domain of convex games, totally balanced games, balancedgames, and superadditive games