84 resultados para Fractional advection-dispersion equation
Resumo:
A recent finding of the structural VAR literature is that the response of hours worked to a technology shock depends on the assumption on the order of integration of the hours. In this work we relax this assumption, allowing for fractional integration and long memory in the process for hours and productivity. We find that the sign and magnitude of the estimated impulse responses of hours to a positive technology shock depend crucially on the assumptions applied to identify them. Responses estimated with short-run identification are positive and statistically significant in all datasets analyzed. Long-run identification results in negative often not statistically significant responses. We check validity of these assumptions with the Sims (1989) procedure, concluding that both types of assumptions are appropriate to recover the impulse responses of hours in a fractionally integrated VAR. However, the application of longrun identification results in a substantial increase of the sampling uncertainty. JEL Classification numbers: C22, E32. Keywords: technology shock, fractional integration, hours worked, structural VAR, identification
Resumo:
This paper studies the rate of convergence of an appropriatediscretization scheme of the solution of the Mc Kean-Vlasovequation introduced by Bossy and Talay. More specifically,we consider approximations of the distribution and of thedensity of the solution of the stochastic differentialequation associated to the Mc Kean - Vlasov equation. Thescheme adopted here is a mixed one: Euler/weakly interactingparticle system. If $n$ is the number of weakly interactingparticles and $h$ is the uniform step in the timediscretization, we prove that the rate of convergence of thedistribution functions of the approximating sequence in the $L^1(\Omega\times \Bbb R)$ norm and in the sup norm is of theorder of $\frac 1{\sqrt n} + h $, while for the densities is ofthe order $ h +\frac 1 {\sqrt {nh}}$. This result is obtainedby carefully employing techniques of Malliavin Calculus.
Resumo:
Although it is commonly accepted that most macroeconomic variables are nonstationary, it is often difficult to identify the source of the non-stationarity. In particular, it is well-known that integrated and short memory models containing trending components that may display sudden changes in their parameters share some statistical properties that make their identification a hard task. The goal of this paper is to extend the classical testing framework for I(1) versus I(0)+ breaks by considering a a more general class of models under the null hypothesis: non-stationary fractionally integrated (FI) processes. A similar identification problem holds in this broader setting which is shown to be a relevant issue from both a statistical and an economic perspective. The proposed test is developed in the time domain and is very simple to compute. The asymptotic properties of the new technique are derived and it is shown by simulation that it is very well-behaved in finite samples. To illustrate the usefulness of the proposed technique, an application using inflation data is also provided.
Resumo:
We study the BPE (Brownian particle equation) model of the Burgers equationpresented in the preceeding article [6]. More precisely, we are interestedin establishing the existence and uniqueness properties of solutions usingprobabilistic techniques.
Resumo:
Contamination of weather radar echoes by anomalous propagation (anaprop) mechanisms remains a serious issue in quality control of radar precipitation estimates. Although significant progress has been made identifying clutter due to anaprop there is no unique method that solves the question of data reliability without removing genuine data. The work described here relates to the development of a software application that uses a numerical weather prediction (NWP) model to obtain the temperature, humidity and pressure fields to calculate the three dimensional structure of the atmospheric refractive index structure, from which a physically based prediction of the incidence of clutter can be made. This technique can be used in conjunction with existing methods for clutter removal by modifying parameters of detectors or filters according to the physical evidence for anomalous propagation conditions. The parabolic equation method (PEM) is a well established technique for solving the equations for beam propagation in a non-uniformly stratified atmosphere, but although intrinsically very efficient, is not sufficiently fast to be practicable for near real-time modelling of clutter over the entire area observed by a typical weather radar. We demonstrate a fast hybrid PEM technique that is capable of providing acceptable results in conjunction with a high-resolution terrain elevation model, using a standard desktop personal computer. We discuss the performance of the method and approaches for the improvement of the model profiles in the lowest levels of the troposphere.
Resumo:
A global existence and uniqueness result of the solution for multidimensional, time dependent, stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H> is proved. It is shown, also, that the solution has finite moments. The result is based on a deterministic existence and uniqueness theorem whose proof uses a contraction principle and a priori estimates.
Resumo:
Using an extended-random-phase-approximation sum-rule technique, we have investigated the bulk-plasmon dispersion relation, incorporating in a simple way exchange and correlation effects within the jellium model. The results obtained are compared with recent experimental findings. The key role played by exchange and correlation effects in improving the agreement between theory and experiment is stressed. The static polarizability has also been calculated as a function of q. The formulas can be easily modified to incorporate band-structure effects (through an intraband electron effective mass) and core-polarization effects (through a static dielectric constant).
Resumo:
The properties of hot, dense stellar matter are investigated with a finite temperature nuclear Thomas-Fermi model.
Resumo:
A new method to solve the Lorentz-Dirac equation in the presence of an external electromagnetic field is presented. The validity of the approximation is discussed, and the method is applied to a particle in the presence of a constant magnetic field.