59 resultados para Figura Complexa de Rey - Complex Figure of Rey
Resumo:
Background: Prolificacy is the most important trait influencing the reproductive efficiency of pig production systems. The low heritability and sex-limited expression of prolificacy have hindered to some extent the improvement of this trait through artificial selection. Moreover, the relative contributions of additive, dominant and epistatic QTL to the genetic variance of pig prolificacy remain to be defined. In this work, we have undertaken this issue by performing one-dimensional and bi-dimensional genome scans for number of piglets born alive (NBA) and total number of piglets born (TNB) in a three generation Iberian by Meishan F2 intercross. Results: The one-dimensional genome scan for NBA and TNB revealed the existence of two genome-wide highly significant QTL located on SSC13 (P < 0.001) and SSC17 (P < 0.01) with effects on both traits. This relative paucity of significant results contrasted very strongly with the wide array of highly significant epistatic QTL that emerged in the bi-dimensional genome-wide scan analysis. As much as 18 epistatic QTL were found for NBA (four at P < 0.01 and five at P < 0.05) and TNB (three at P < 0.01 and six at P < 0.05), respectively. These epistatic QTL were distributed in multiple genomic regions, which covered 13 of the 18 pig autosomes, and they had small individual effects that ranged between 3 to 4% of the phenotypic variance. Different patterns of interactions (a × a, a × d, d × a and d × d) were found amongst the epistatic QTL pairs identified in the current work.Conclusions: The complex inheritance of prolificacy traits in pigs has been evidenced by identifying multiple additive (SSC13 and SSC17), dominant and epistatic QTL in an Iberian × Meishan F2 intercross. Our results demonstrate that a significant fraction of the phenotypic variance of swine prolificacy traits can be attributed to first-order gene-by-gene interactions emphasizing that the phenotypic effects of alleles might be strongly modulated by the genetic background where they segregate.
Resumo:
Removal of introns during pre-mRNA splicing is a critical process in gene expression, and understanding its control at both single-gene and genomic levels is one of the great challenges in Biology. Splicing takes place in a dynamic, large ribonucleoprotein complex known as the spliceosome. Combining Genetics and Biochemistry, Saccharomyces cerevisiae provides insights into its mechanisms, including its regulation by RNA-protein interactions. Recent genome-wide analyses indicate that regulated splicing is broad and biologically relevant even in organisms with a relatively simple intronic structure, such as yeast. Furthermore, the possibility of coordination in splicing regulation at genomic level is becoming clear in this model organism. This should provide a valuable system to approach the complex problem of the role of regulated splicing in genomic expression.
Resumo:
The complex etiology of schizophrenia has prompted researchers to develop clozapine-related multitargetstrategies to combat its symptoms. Here we describe a series of new 6-aminomethylbenzofuranones in aneffort to find new chemical structures with balanced affinities for 5-HT2 and dopamine receptors. Throughbiological and computational studies of 5-HT2A and D2 receptors, we identified the receptor serine residuesS3.36 and S5.46 as the molecular keys to explaining the differences in affinity and selectivity betweenthese new compounds for this group of receptors. Specifically, the ability of these compounds to establishone or two H-bonds with these key residues appears to explain their difference in affinity. In addition, wedescribe compound 2 (QF1004B) as a tool to elucidate the role of 5-HT2C receptors in mediating antipsychoticeffects and metabolic adverse events. The compound 16a (QF1018B) showed moderate to high affinitiesfor D2 and 5-HT2A receptors, and a 5-HT2A/D2 ratio was predictive of an atypical antipsychotic profile.
Resumo:
This paper presents a two--factor model of the term structure ofinterest rates. We assume that default free discount bond prices aredetermined by the time to maturity and two factors, the long--term interestrate and the spread (difference between the long--term rate and theshort--term (instantaneous) riskless rate). Assuming that both factorsfollow a joint Ornstein--Uhlenbeck process, a general bond pricing equationis derived. We obtain a closed--form expression for bond prices andexamine its implications for the term structure of interest rates. We alsoderive a closed--form solution for interest rate derivatives prices. Thisexpression is applied to price European options on discount bonds andmore complex types of options. Finally, empirical evidence of the model'sperformance is presented.
Resumo:
Ever since their discovery as cellular counterparts of viral oncogenes more than 25 years ago, much progress has been made in understanding the complex networks of signal transduction pathways activated by oncogenic Ras mutations in human cancers. The activity of Ras is regulated by nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), and much emphasis has been put into the biochemical and structural analysis of the Ras/GAP complex. The mechanisms by which GAPs catalyze Ras-GTP hydrolysis have been clarified and revealed that oncogenic Ras mutations confer resistance to GAPs and remain constitutively active. However, it is yet unclear how cells coordinate the large and divergent GAP protein family to promote Ras inactivation and ensure a certain biological response. Different domain arrangements in GAPs to create differential protein-protein and protein-lipid interactions are probably key factors determining the inactivation of the 3 Ras isoforms H-, K-, and N-Ras and their effector pathways. In recent years, in vitro as well as cell- and animal-based studies examining GAP activity, localization, interaction partners, and expression profiles have provided further insights into Ras inactivation and revealed characteristics of several GAPs to exert specific and distinct functions. This review aims to summarize knowledge on the cell biology of RasGAP proteins that potentially contributes to differential regulation of spatiotemporal Ras signaling.
Resumo:
In dealing with systems as complex as the cytoskeleton, we need organizing principles or, short of that, an empirical framework into which these systems fit. We report here unexpected invariants of cytoskeletal behavior that comprise such an empirical framework. We measured elastic and frictional moduli of a variety of cell types over a wide range of time scales and using a variety of biological interventions. In all instances elastic stresses dominated at frequencies below 300 Hz, increased only weakly with frequency, and followed a power law; no characteristic time scale was evident. Frictional stresses paralleled the elastic behavior at frequencies below 10 Hz but approached a Newtonian viscous behavior at higher frequencies. Surprisingly, all data could be collapsed onto master curves, the existence of which implies that elastic and frictional stresses share a common underlying mechanism. Taken together, these findings define an unanticipated integrative framework for studying protein interactions within the complex microenvironment of the cell body, and appear to set limits on what can be predicted about integrated mechanical behavior of the matrix based solely on cytoskeletal constituents considered in isolation. Moreover, these observations are consistent with the hypothesis that the cytoskeleton of the living cell behaves as a soft glassy material, wherein cytoskeletal proteins modulate cell mechanical properties mainly by changing an effective temperature of the cytoskeletal matrix. If so, then the effective temperature becomes an easily quantified determinant of the ability of the cytoskeleton to deform, flow, and reorganize.
Resumo:
The figurative painter accesses very complex levels of knowledge. To produce a painting requires, first, a deep analysis of the image of the reality and, afterwards, the study of the reconstruction of this reality. This is not about a process of copying, but a process of the comprehension of the concepts that appear in the representation. The drawing guides us in the process of the production of the surface and in the distribution of the colours that, after all, are the data with which the vision mechanism builds the visual reality. Knowing the colour and its behaviour have always been a requirement for the figurative painter. From that knowledge we can draw wider conclusions.
Resumo:
Nitrogen doped silicon (NIDOS) films have been deposited by low-pressure chemical vapor deposition from silane SiH4 and ammonia NH3 at high temperature (750°C) and the influences of the NH3/SiH4 gas ratio on the films deposition rate, refractive index, stoichiometry, microstructure, electrical conductivity, and thermomechanical stress are studied. The chemical species derived from silylene SiH2 into the gaseous phase are shown to be responsible for the deposition of NIDOS and/or (silicon rich) silicon nitride. The competition between these two deposition phenomena leads finally to very high deposition rates (100 nm/min) for low NH3/SiH4 gas ratio (R¿0.1). Moreover, complex variations of NIDOS film properties are evidenced and related to the dual behavior of the nitrogen atom into silicon, either n-type substitutional impurity or insulative intersticial impurity, according to the Si¿N atomic bound. Finally, the use of NIDOS deposition for the realization of microelectromechanical systems is investigated.
Resumo:
A prior long-term and complex evaluation of the already available data on the geophysical prospecting during the first season work carried out at 2006, at the archaeological site of Tchinguiz Tepe of Termez, took place to decide the strategy to follow during the campaign of 2007. This previous evaluation of the information, on one hand, leaded to the decision to increase the geophysical prospecting at Tchinguiz Tepe, on the other hand, to decide the exact location of areas where the archaeological interventions.would carry out. The main objective at the beginning of this new season was to crosscheck the reliabilityof the measurements and, at the same time, to establish the unknown up to the present archaeologicaland chronological sequence of Tchinguiz Tepe. Meanwhile, the geophysical prospecting also wasextended to the outskirts of the city were the localisation of an unknown up to now Buddhist Monasterywas possible.
Resumo:
The reelin gene encodes an extracellular protein that is crucial for neuronal migration in laminated brain regions. To gain insights into the functions of Reelin, we performed high-resolution in situ hybridization analyses to determine the pattern of reelin expression in the developing forebrain of the mouse. We also performed double-labeling studies with several markers, including calcium-binding proteins, GAD65/67, and neuropeptides, to characterize the neuronal subsets that express reelin transcripts. reelinexpression was detected at embryonic day 10 and later in the forebrain, with a distribution that is consistent with the prosomeric model of forebrain regionalization. In the diencephalon, expression was restricted to transverse and longitudinal domains that delineated boundaries between neuromeres. During embryogenesis,reelin was detected in the cerebral cortex in Cajal-Retzius cells but not in the GABAergic neurons of layer I. At prenatal stages, reelin was also expressed in the olfactory bulb, and striatum and in restricted nuclei in the ventral telencephalon, hypothalamus, thalamus, and pretectum. At postnatal stages, reelin transcripts gradually disappeared from Cajal-Retzius cells, at the same time as they appeared in subsets of GABAergic neurons distributed throughout neocortical and hippocampal layers. In other telencephalic and diencephalic regions,reelin expression decreased steadily during the postnatal period. In the adult, there was prominent expression in the olfactory bulb and cerebral cortex, where it was restricted to subsets of GABAergic interneurons that co-expressed calbindin, calretinin, neuropeptide Y, and somatostatin. This complex pattern of cellular and regional expression is consistent with Reelin having multiple roles in brain development and adult brain function.
Resumo:
A prior long-term and complex evaluation of the already available data on the geophysical prospecting during the first season work carried out at 2006, at the archaeological site of Tchinguiz Tepe of Termez, took place to decide the strategy to follow during the campaign of 2007. This previous evaluation of the information, on one hand, leaded to the decision to increase the geophysical prospecting at Tchinguiz Tepe, on the other hand, to decide the exact location of areas where the archaeological interventions.would carry out. The main objective at the beginning of this new season was to crosscheck the reliabilityof the measurements and, at the same time, to establish the unknown up to the present archaeologicaland chronological sequence of Tchinguiz Tepe. Meanwhile, the geophysical prospecting also wasextended to the outskirts of the city were the localisation of an unknown up to now Buddhist Monasterywas possible.
Resumo:
The relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988 controls from the Spanish Bladder Cancer (SBC)/EPICURO Study. A preliminary exploration with the widely used univariate logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold LASSO (BTL), a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed. The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk.
Resumo:
L’objectiu d’aquest projecte és estudiar la recepció de l’obra de Bach des de la seva vida fins l’actualitat. Es pretén, d’una banda, esbrinar quins són els motius que van produir que cada època històrica jutjés l’obra de Bach de diferent manera, quins van ser els mitjans de conservació de la seva obra així com quins canvis va patir la seva obra per tal d’encaixar amb cada època. D’altra banda pretén exemplificar aquesta diferència en la posició que cada època va atorgar a l’obra de Bach mitjançant obres de compositors posteriors (Mozart, Schumann, Brahms, Britten i Villa-Lobos) que, cadascuna de manera diferent, contenen alguna reminiscència de Bach. La metodologia utilitzada ha consistit en la seva major part en la recerca bibliogràfica però també en la comparació de versions d’obres musicals en partitures i gravacions. La conclusió principal que es pot extreure d’aquest treball és que cadascú és producte de la seva època amb el seu context particular i per tant, qualsevol interpretació que pugui fer d’una obra musical amb el seu estil compositiu ve fortament determinat per la ideologia del context que l’envolta. És normal, doncs, que el segle XVIII la decadència del pensament religiós comportés un rebuig per l’obra de Bach la qual és majoritàriament de caràcter religiós, mentre que el segle XIX amb l’emergència de la burgesia i els seus valors romàntics s’elevés la figura de Bach com l’heroi del poble alemany.
Resumo:
The potential of digital holography for complex manipulation of micron-sized particles with optical tweezers has been clearly demonstrated. By contrast, its use in quantitative experiments has been rather limited, partly due to fluctuations introduced by the spatial light modulator (SLM) that displays the kinoforms. This is an important issue when high temporal or spatial stability is a concern. We have investigated the performance of both an analog-addressed and a digitally-addressed SLM, measuring the phase fluctuations of the modulated beam and evaluating the resulting positional stability of a holographic trap. We show that, despite imparting a more unstable modulation to the wavefront, our digitally-addressed SLM generates optical traps in the sample plane stable enough for most applications. We further show that traps produced by the analog-addressed SLM exhibit a superior pointing stability, better than 1 nm, which is comparable to that of non-holographic tweezers. These results suggest a means to implement precision force measurement experiments with holographic optical tweezers (HOTs).
Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2
Resumo:
BACKGROUND: The p53 transcription factor is located at the core of a complex wiring of signaling pathways that are critical for the preservation of cellular homeostasis. Only recently it has become clear that p53 regulates the expression of several long intergenic noncoding RNAs (lincRNAs). However, relatively little is known about the role that lincRNAs play in this pathway. RESULTS: Here we characterize a lincRNA named Pint (p53 induced noncoding transcript). We show that Pint is a ubiquitously expressed lincRNA that is finely regulated by p53. In mouse cells, Pint promotes cell proliferation and survival by regulating the expression of genes of the TGF-β, MAPK and p53 pathways. Pint is a nuclear lincRNA that directly interacts with the Polycomb repressive complex 2 (PRC2), and is required for PRC2 targeting of specific genes for H3K27 tri-methylation and repression. Furthermore, Pint functional activity is highly dependent on PRC2 expression. We have also identified Pint human ortholog (PINT), which presents suggestive analogies with the murine lincRNA. PINT is similarly regulated by p53, and its expression significantly correlates with the same cellular pathways as the mouse ortholog, including the p53 pathway. Interestingly, PINT is downregulated in colon primary tumors, while its overexpression inhibits the proliferation of tumor cells, suggesting a possible role as tumor suppressor. CONCLUSIONS: Our results reveal a p53 autoregulatory negative mechanism where a lincRNA connects p53 activation with epigenetic silencing by PRC2. Additionally, we show analogies and differences between the murine and human orthologs, identifying a novel tumor suppressor candidate lincRNA.