96 resultados para Evanescent wave fibre optic sensors
Resumo:
The aim of this project is to accomplish an application software based on Matlab to calculate the radioelectrical coverage by surface wave of broadcast radiostations in the band of Medium Wave (WM) all around the world. Also, given the location of a transmitting and a receiving station, the software should be able to calculate the electric field that the receiver should receive at that specific site. In case of several transmitters, the program should search for the existence of Inter-Symbol Interference, and calculate the field strenght accordingly. The application should ask for the configuration parameters of the transmitter radiostation within a Graphical User Interface (GUI), and bring back the resulting coverage above a map of the area under study. For the development of this project, it has been used several conductivity databases of different countries, and a high-resolution elevation database (GLOBE). Also, to calculate the field strenght due to groundwave propagation, it has been used ITU GRWAVE program, which must be integrated into a Matlab interface to be used by the application developed.
Resumo:
L’Slot, conegut per tots amb el nom d’Scalextric, s’ha implantat com a una forma d’oci habitual, la pràctica del qual no queda restringida als més petits, sinó que cada vegada crea més afició entre els grans. El fet que l’Slot s’hagi extès entre els adults n’ha revolucionat la pràctica. L’entrada al mercat de l’Slot de gent adulta, i amb poder adquisitiu molt superior als adolescents, ha provocat que les marques especialitzades vagin evolucionant els seus productes cada vegada més. Totes les marques s’han vist obligades a desenvolupar vehicles més competitius i alhora treure al mercat accessoris que augmentin la realitat del joc. Una de les necessitats que s’ha creat és la de competir entre jugadors. Aquesta competició tan pot ser en forma de carrera entre diversos participants, com de forma individual, cronometrant el temps de cada participant en un circuit. L’objectiu principal del projecte és crear un sistema capaç de realitzar cronometratges en temps real mitjançant sensors digitals ja existents en el mercat de l’Slot i poder controlar i visualitzar la informació des d’un PC. Per a poder captar els senyals dels sensors s’ha utilitzat un sistema microcontrolat, que garanteix gran velocitat d’adquisició, processament de dades i transmissió. La comunicació del Microcontrolador amb el PC s’ha realizat mitjançant el bus USB. El PC serà el controlador del sistema i donarà les ordres al Microcontrolador, podent així tenir control total sobre el funcionament del programa. També serà el PC el que tractarà els crocometratges enregistrats i els mostrarà per pantalla
Resumo:
Amb el present projecte es proposa fer un estudi de la web semàntica aplicada a la descripció i modelització de la instrumentació marina operada en el context de campanyes d'investigació oceanogràfica.
Resumo:
Nanocrystalline TiO2 modified with Nb has been produced through the sol-gel technique. Nanopowders have been obtained by means of the hydrolysis of pure alkoxides with deionized water and peptization of the resulting hydrolysate with diluted acid nitric at 100 C. The addition of Nb stabilizes the anatase phase to higher temperatures. XRD spectra of the undoped and the Nb-doped samples show that the undoped sample has been almost totally converted to rutile at 600 C, meanwhile the doped samples present still a low percentage of rutile phase. Nanocrystalline powders stabilized at 600 C with grain sizes of about 17 nm have successfully been synthesized by the addition of Nb with a concentration of 2% at., which appears to be an adequate additive concentration to improve the gas sensor performances, such as it is suggested by the catalytic conversion efficiency experiments performed from FTIR measurements. FTIR absorbance spectra show that catalytic conversion of CO occurs at lower temperatures when niobium is introduced. The electrical response of the films to different concentrations of CO and ethanol has been monitored in dry and wet environments in order to test the influence of humidity in the sensor response. The addition of Nb decreases the working temperature and increases the stability of the layers. Also, large enhancement of the response time is obtained even with lower working temperatures. Moreover, humidity effects on the gas sensor response toward CO and ethanol are less important in Nb-doped samples than in the undoped ones.
Resumo:
Nanocrystalline TiO2 modified with Nb has been produced through the sol-gel technique. Nanopowders have been obtained by means of the hydrolysis of pure alkoxides with deionized water and peptization of the resulting hydrolysate with diluted acid nitric at 100 C. The addition of Nb stabilizes the anatase phase to higher temperatures. XRD spectra of the undoped and the Nb-doped samples show that the undoped sample has been almost totally converted to rutile at 600 C, meanwhile the doped samples present still a low percentage of rutile phase. Nanocrystalline powders stabilized at 600 C with grain sizes of about 17 nm have successfully been synthesized by the addition of Nb with a concentration of 2% at., which appears to be an adequate additive concentration to improve the gas sensor performances, such as it is suggested by the catalytic conversion efficiency experiments performed from FTIR measurements. FTIR absorbance spectra show that catalytic conversion of CO occurs at lower temperatures when niobium is introduced. The electrical response of the films to different concentrations of CO and ethanol has been monitored in dry and wet environments in order to test the influence of humidity in the sensor response. The addition of Nb decreases the working temperature and increases the stability of the layers. Also, large enhancement of the response time is obtained even with lower working temperatures. Moreover, humidity effects on the gas sensor response toward CO and ethanol are less important in Nb-doped samples than in the undoped ones.
Resumo:
We have employed time-dependent local-spin density-functional theory to analyze the multipole spin and charge density excitations in GaAs-AlxGa1-xAs quantum dots. The on-plane transferred momentum degree of freedom has been taken into account, and the wave-vector dependence of the excitations is discussed. In agreement with previous experiments, we have found that the energies of these modes do not depend on the transferred wave vector, although their intensities do. Comparison with a recent resonant Raman scattering experiment [C. Schüller et al., Phys. Rev. Lett. 80, 2673 (1998)] is made. This allows us to identify the angular momentum of several of the observed modes as well as to reproduce their energies
Resumo:
A modified Bargmann-Wigner method is used to derive (6s + 1)-component wave equations. The relation between different forms of these equations is shown.
Resumo:
The Newton-Hooke algebras in d dimensions are constructed as contractions of dS(AdS) algebras. Nonrelativistic brane actions are WZ terms of these Newton-Hooke algebras. The NH algebras appear also as subalgebras of multitemporal relativistic conformal algebras, SO(d+1,p+2). We construct generalizations of pp-wave metrics from these algebras.
Resumo:
We study the collision of a gravitational wave pulse and a soliton wave on a spatially homogeneous background. This collision is described by an exact solution of Einsteins equations in a vacuum which is generated from a nondiagonal seed by means of a soliton transformation. The effect produced by the soliton on the amplitude and polarization of the wave is considered.
Resumo:
Through an imaginary change of coordinates in the Galilei algebra in 4 space dimensions and making use of an original idea of Dirac and Lvy-Leblond, we are able to obtain the relativistic equations of Dirac and of Bargmann and Wigner starting with the (Galilean-invariant) Schrdinger equation.
Resumo:
The effect of quenched disorder on the propagation of autowaves in excitable media is studied both experimentally and numerically in relation to the light-sensitive Belousov-Zhabotinsky reaction. The spatial disorder is introduced through a random distribution with two different levels of transmittance. In one dimension the (time-averaged) wave speed is smaller than the corresponding to a homogeneous medium with the mean excitability. Contrarily, in two dimensions the velocity increases due to the roughening of the front. Results are interpreted using kinematic and scaling arguments. In particular, for d = 2 we verify a theoretical prediction of a power-law dependence for the relative change of the propagation speed on the disorder amplitude.