33 resultados para Erosion surfaces
Resumo:
Objective: An evaluation and comparison is made of the thermal increment at different implant surfaces during irradiation with CO2 and ErCr:YSGG lasers. Study design: Five threaded and impacted implants with four types of surfaces were inserted in an adult pig rib: two implants with a hydroxyapatite surface (HA)(impacted and threaded, respectively), a machined titanium surface implant (TI mach), a titanium plasma spray surface implant (TPS), and a sandblasted, acid-etched surface implant (SBAE). A 0.5-mm diameter bone defect was made in the implant apical zone, and a type-K thermocouple (Termopar)® was placed in contact with the implant. The implants were irradiated in the coronal zone of each implant with a CO2 (4 W continuous mode) and an ErCr:YSGG laser (1.5 W, pulsed mode) first without and then with refrigeration. The temperature variations at the implant apical surface were recorded. Results: An apical temperature increase was recorded in all cases during CO2 and ErCr:YSGG laser irradiation without refrigeration. However, when the ErCr:YSGG was used with a water spray, a decrease in temperature was observed in all implants. The acid-etched and sandblasted surfaces were those most affected by the thermal changes. Conclusions: The ErCr:YSGG laser with a water spray applied to the sealing cap or coronal zone of the implants does not generate thermal increments in the apical surface capable of adversely affecting osseointegration and the integrity of the peri-implant bone tissue
Resumo:
Sixty-eight 10Be terrestrial cosmogenic nuclide (TCN) surface exposure ages are presented to define the timing of alluvial fan and strath terrace formation in the hyper-arid San Juan region of the Argentine Precordillera. This region is tectonically active, and numerous fault scarps traverse Quaternary landforms. The three study sites, Marquesado strath complex, Loma Negra alluvial fan and Carpintería strath complex reveal a history of alluvial fan and strath terrace development over the past w225 ka. The Marquesado complex Q3m surface dates to w17 3 ka, whereas the Loma Negra Q1ln, Q2ln, Q3ln, Q4ln, and Q5ln surfaces date to w24 3 ka, w48 2 ka, w65 13 ka, w105 21 ka, and w181 29 ka, respectively. The Carpintería complex comprises eight surfaces that have been dated and include the Q1c (w23 3 ka), Q2c (w5 5 ka), Q3ac (w25 12 ka), Q3bc (w29 15 ka), Q4c (w61 12 ka), Q5c (w98 18 ka), Q6c (w93 18 ka), and Q7c (w212 37 ka). 10Be TCN depth profile data for the Loma Negra alluvial fan complex and Carpintería strath terrace complex, as well as OSL ages on some Carpintería deposits, aid in refining surface ages for comparison with local and global climate proxies, and additionally offer insights into inheritance and erosion rate values for TCNs (w10 104 10Be atoms/g of SiO2 and w5 m Ma 1, respectively). Comparison with other alluvial fan studies in the region show that less dynamic and older preserved surfaces occur in the Carpintería and Loma Negra areas with only younger alluvial fan surfaces preserved both to the north and south. These data in combination with that of other studies illustrate broad regional agreement between alluvial fan and strath terrace ages, which suggests that climate is the dominant forcing agent in the timing of terrace formation in this region.
Resumo:
Here we investigate the formation of superficial micro- and nanostructures in poly(ethylene-2,6-naphthalate) (PEN), with a view to their use in biomedical device applications, and compare its performance with a polymer commonly used for the fabrication of these devices, poly(methyl methacrylate) (PMMA). The PEN is found to replicate both micro- and nanostructures in its surface, albeit requiring more forceful replication conditions than PMMA, producing a slight increase in surface hydrophilicity. This ability to form micro/nanostructures, allied to biocompatibility and good optical transparency, suggests that PEN could be a useful material for production of, or for incorporation into, transparent devices for biomedical applications. Such devices will be able to be autoclaved, due to the polymer's high temperature stability, and will be useful for applications where forceful experimental conditions are required, due to a superior chemical resistance over PMMA.