38 resultados para Elliptic
Resumo:
Networks are evolving toward a ubiquitous model in which heterogeneousdevices are interconnected. Cryptographic algorithms are required for developing securitysolutions that protect network activity. However, the computational and energy limitationsof network devices jeopardize the actual implementation of such mechanisms. In thispaper, we perform a wide analysis on the expenses of launching symmetric and asymmetriccryptographic algorithms, hash chain functions, elliptic curves cryptography and pairingbased cryptography on personal agendas, and compare them with the costs of basic operatingsystem functions. Results show that although cryptographic power costs are high and suchoperations shall be restricted in time, they are not the main limiting factor of the autonomyof a device.
Resumo:
A mathematical model of the voltage drop which arises in on-chip power distribution networks is used to compare the maximum voltage drop in the case of different geometric arrangements of the pads supplying power to the chip. These include the square or Manhattan power pad arrangement, which currently predominates, as well as equilateral triangular and hexagonal arrangements. In agreement with the findings in the literature and with physical and SPICE models, the equilateral triangular power pad arrangement is found to minimize the maximum voltage drop. This headline finding is a consequence of relatively simple formulas for the voltage drop, with explicit error bounds, which are established using complex analysis techniques, and elliptic functions in particular.
Resumo:
In this study, the population structure of the white grunt (Haemulon plumieri) from the northern coast of the Yucatan Peninsula was determined through an otolith shape analysis based on the samples collected in three locations: Celestún (N 20°49",W 90°25"), Dzilam (N 21°23", W 88°54") and Cancún (N 21°21",W 86°52"). The otolith outline was based on the elliptic Fourier descriptors, which indicated that the H. plumieri population in the northern coast of the Yucatan Peninsula is composed of three geographically delimited units (Celestún, Dzilam, and Cancún). Significant differences were observed in mean otolith shapes among all samples (PERMANOVA; F2, 99 = 11.20, P = 0.0002), and the subsequent pairwise comparisons showed that all samples were significantly differently from each other. Samples do not belong to a unique white grunt population, and results suggest that they might represent a structured population along the northern coast of the Yucatan Peninsula
Resumo:
In two previous papers [J. Differential Equations, 228 (2006), pp. 530 579; Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 1261 1300] we have developed fast algorithms for the computations of invariant tori in quasi‐periodic systems and developed theorems that assess their accuracy. In this paper, we study the results of implementing these algorithms and study their performance in actual implementations. More importantly, we note that, due to the speed of the algorithms and the theoretical developments about their reliability, we can compute with confidence invariant objects close to the breakdown of their hyperbolicity properties. This allows us to identify a mechanism of loss of hyperbolicity and measure some of its quantitative regularities. We find that some systems lose hyperbolicity because the stable and unstable bundles approach each other but the Lyapunov multipliers remain away from 1. We find empirically that, close to the breakdown, the distances between the invariant bundles and the Lyapunov multipliers which are natural measures of hyperbolicity depend on the parameters, with power laws with universal exponents. We also observe that, even if the rigorous justifications in [J. Differential Equations, 228 (2006), pp. 530-579] are developed only for hyperbolic tori, the algorithms work also for elliptic tori in Hamiltonian systems. We can continue these tori and also compute some bifurcations at resonance which may lead to the existence of hyperbolic tori with nonorientable bundles. We compute manifolds tangent to nonorientable bundles.
Resumo:
A mathematical model of the voltage drop which arises in on-chip power distribution networks is used to compare the maximum voltage drop in the case of different geometric arrangements of the pads supplying power to the chip. These include the square or Manhattan power pad arrangement, which currently predominates, as well as equilateral triangular and hexagonal arrangements. In agreement with the findings in the literature and with physical and SPICE models, the equilateral triangular power pad arrangement is found to minimize the maximum voltage drop. This headline finding is a consequence of relatively simple formulas for the voltage drop, with explicit error bounds, which are established using complex analysis techniques, and elliptic functions in particular.
Resumo:
We show the existence of families of hip-hop solutions in the equal-mass 2N-body problem which are close to highly eccentric planar elliptic homographic motions of 2N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ϵ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ϵ ≠ 0, the topological transversality persists and Brouwer's fixed point theorem shows the existence of this kind of solutions in the full system
Resumo:
El present projecte realitza una anàlisi de les claus criptogràfiques utilitzades en bitcoin. El projecte introdueix les nocions bàsiques necessàries de les corbes el·líptiques, la criptografia de corbes el·líptiques i els bitcoins per a realitzar l’anàlisi. Aquesta anàlisi consisteix en explorar el codi de diferents wallets bitcoin i realitzar un estudi empíric de l’aleatorietat de les claus. Per últim, el projecte introdueix el concepte de wallet determinista, el seu funcionament i alguns dels problemes que presenta.
Resumo:
Un dels principals problemes quan es realitza un anàlisi de contorns és la gran quantitat de dades implicades en la descripció de la figura. Per resoldre aquesta problemàtica, s’aplica la parametrització que consisteix en obtenir d’un contorn unes dades representatives amb els mínims coeficients possibles, a partir dels quals es podrà reconstruir de nou sense pèrdues molt evidents d’informació. En figures de contorns tancats, la parametrització més estudiada és l’aplicació de la transformada discreta de Fourier (DFT). Aquesta s’aplica a la seqüència de valors que descriu el comportament de les coordenades x i y al llarg de tots els punts que formen el traç. A diferència, en els contorns oberts no es pot aplicar directament la DFT ja que per fer-ho es necessita que el valor de x i de y siguin iguals tan en el primer punt del contorn com en l’últim. Això és degut al fet que la DFT representa sense error senyals periòdics. Si els senyals no acaben en el mateix punt, representa que hi ha una discontinuïtat i apareixen oscil·lacions a la reconstrucció. L’objectiu d’aquest treball és parametritzar contorns oberts amb la mateixa eficiència que s’obté en la parametrització de contorns tancats. Per dur-ho a terme, s’ha dissenyat un programa que permet aplicar la DFT en contorns oberts mitjançant la modificació de les seqüencies de x i y. A més a més, també utilitzant el programari Matlab s’han desenvolupat altres aplicacions que han permès veure diferents aspectes sobre la parametrització i com es comporten els Descriptors El·líptics de Fourier (EFD). Els resultats obtinguts han demostrat que l’aplicació dissenyada permet la parametrització de contorns oberts amb compressions òptimes, fet que facilitarà l’anàlisi quantitatiu de formes en camps com l’ecologia, medicina, geografia, entre d’altres.