39 resultados para Educational data mining
Resumo:
The European Space Agency's Gaia mission will create the largest and most precise three dimensional chart of our galaxy (the Milky Way), by providing unprecedented position, parallax, proper motion, and radial velocity measurements for about one billion stars. The resulting catalogue will be made available to the scientific community and will be analyzed in many different ways, including the production of a variety of statistics. The latter will often entail the generation of multidimensional histograms and hypercubes as part of the precomputed statistics for each data release, or for scientific analysis involving either the final data products or the raw data coming from the satellite instruments. In this paper we present and analyze a generic framework that allows the hypercube generation to be easily done within a MapReduce infrastructure, providing all the advantages of the new Big Data analysis paradigmbut without dealing with any specific interface to the lower level distributed system implementation (Hadoop). Furthermore, we show how executing the framework for different data storage model configurations (i.e. row or column oriented) and compression techniques can considerably improve the response time of this type of workload for the currently available simulated data of the mission. In addition, we put forward the advantages and shortcomings of the deployment of the framework on a public cloud provider, benchmark against other popular solutions available (that are not always the best for such ad-hoc applications), and describe some user experiences with the framework, which was employed for a number of dedicated astronomical data analysis techniques workshops.
Resumo:
The European Space Agency's Gaia mission will create the largest and most precise three dimensional chart of our galaxy (the Milky Way), by providing unprecedented position, parallax, proper motion, and radial velocity measurements for about one billion stars. The resulting catalogue will be made available to the scientific community and will be analyzed in many different ways, including the production of a variety of statistics. The latter will often entail the generation of multidimensional histograms and hypercubes as part of the precomputed statistics for each data release, or for scientific analysis involving either the final data products or the raw data coming from the satellite instruments. In this paper we present and analyze a generic framework that allows the hypercube generation to be easily done within a MapReduce infrastructure, providing all the advantages of the new Big Data analysis paradigmbut without dealing with any specific interface to the lower level distributed system implementation (Hadoop). Furthermore, we show how executing the framework for different data storage model configurations (i.e. row or column oriented) and compression techniques can considerably improve the response time of this type of workload for the currently available simulated data of the mission. In addition, we put forward the advantages and shortcomings of the deployment of the framework on a public cloud provider, benchmark against other popular solutions available (that are not always the best for such ad-hoc applications), and describe some user experiences with the framework, which was employed for a number of dedicated astronomical data analysis techniques workshops.
Resumo:
DDM is a framework that combines intelligent agents and artificial intelligence traditional algorithms such as classifiers. The central idea of this project is to create a multi-agent system that allows to compare different views into a single one.
Resumo:
Background: Current advances in genomics, proteomics and other areas of molecular biology make the identification and reconstruction of novel pathways an emerging area of great interest. One such class of pathways is involved in the biogenesis of Iron-Sulfur Clusters (ISC). Results: Our goal is the development of a new approach based on the use and combination of mathematical, theoretical and computational methods to identify the topology of a target network. In this approach, mathematical models play a central role for the evaluation of the alternative network structures that arise from literature data-mining, phylogenetic profiling, structural methods, and human curation. As a test case, we reconstruct the topology of the reaction and regulatory network for the mitochondrial ISC biogenesis pathway in S. cerevisiae. Predictions regarding how proteins act in ISC biogenesis are validated by comparison with published experimental results. For example, the predicted role of Arh1 and Yah1 and some of the interactions we predict for Grx5 both matches experimental evidence. A putative role for frataxin in directly regulating mitochondrial iron import is discarded from our analysis, which agrees with also published experimental results. Additionally, we propose a number of experiments for testing other predictions and further improve the identification of the network structure. Conclusion: We propose and apply an iterative in silico procedure for predictive reconstruction of the network topology of metabolic pathways. The procedure combines structural bioinformatics tools and mathematical modeling techniques that allow the reconstruction of biochemical networks. Using the Iron Sulfur cluster biogenesis in S. cerevisiae as a test case we indicate how this procedure can be used to analyze and validate the network model against experimental results. Critical evaluation of the obtained results through this procedure allows devising new wet lab experiments to confirm its predictions or provide alternative explanations for further improving the models.
Resumo:
Background: Information about the composition of regulatory regions is of great value for designing experiments to functionally characterize gene expression. The multiplicity of available applications to predict transcription factor binding sites in a particular locus contrasts with the substantial computational expertise that is demanded to manipulate them, which may constitute a potential barrier for the experimental community. Results: CBS (Conserved regulatory Binding Sites, http://compfly.bio.ub.es/CBS) is a public platform of evolutionarily conserved binding sites and enhancers predicted in multiple Drosophila genomes that is furnished with published chromatin signatures associated to transcriptionally active regions and other experimental sources of information. The rapid access to this novel body of knowledge through a user-friendly web interface enables non-expert users to identify the binding sequences available for any particular gene, transcription factor, or genome region. Conclusions: The CBS platform is a powerful resource that provides tools for data mining individual sequences and groups of co-expressed genes with epigenomics information to conduct regulatory screenings in Drosophila.
Resumo:
Peer-reviewed
Resumo:
Un árbol de decisión es una forma gráfica y analítica de representar todos los eventos (sucesos) que pueden surgir a partir de una decisión asumida en cierto momento. Nos ayudan a tomar la decisión más"acertada", desde un punto de vista probabilístico, ante un abanico de posibles decisiones. Estos árboles permiten examinar los resultados y determinar visualmente cómo fluye el modelo. Los resultados visuales ayudan a buscar subgrupos específicos y relaciones que tal vez no encontraríamos con estadísticos más tradicionales. Los árboles de decisión son una técnica estadística para la segmentación, la estratificación, la predicción, la reducción de datos y el filtrado de variables, la identificación de interacciones, la fusión de categorías y la discretización de variables continuas. La función árboles de decisión (Tree) en SPSS crea árboles de clasificación y de decisión para identificar grupos, descubrir las relaciones entre grupos y predecir eventos futuros. Existen diferentes tipos de árbol: CHAID, CHAID exhaustivo, CRT y QUEST, según el que mejor se ajuste a nuestros datos.
Resumo:
En els darrers vint anys la informació en línia ha esdevingut un factor decisiu per a l’activitat acadèmica i de recerca, i en conseqüència els recursos electrònics s’han anat “apropiant” progressivament d’una part cada vegada més important dels pressupostos de les biblioteques. La contractació dels recursos electrònics ha anat assumint una posició determinant en l’economia dels serveis bibliotecaris, a mesura que les publicacions en paper han anat perdent terreny davant les publicacions digitals. S’estima que les biblioteques universitàries italianes – malgrat no estar a l’avantguarda en aquest sector – inverteixen des de ja fa alguns anys més de la meitat dels seus pressupostos en l’adquisició de recursos electrònics. Com és sabut, el desenvolupament del mercat de la informació digital ha empès les biblioteques a associar-se en organitzacions i consorcis, fins i tot en aquells contextos tradicionalment reticents a la cooperació. El mètode cooperatiu es considera un element resolutiu dins el món de la informació electrònica i els consorcis són l’instrument organitzatiu més adient per tal que aquest enfocament sigui eficaç. En els darrers anys els consorcis han empès la seva iniciativa més enllà de les adquisicions i les negociacions de les llicències electròniques, per a invertir en els àmbits de l’accés obert, de la preservació digital, del data mining, de la gestió col·lectiva dels documents en paper, dels sistemes de gestió bibliotecària (ILS i eines de descoberta), de les plataformes d’accés, i molts altres. Més recentment ha sorgit una major disposició per part dels consorcis per a col·laborar amb altres organitzacions que treballen en diversos aspectes de l’àmbit de la comunicació científica i en la gestió i avaluació de la recerca (agències de finançament de la recerca, editorials, empreses de tecnologies de la informació, etc.) per tal de fer front a les noves necessitats de les biblioteques destinades a ampliar la seva intervenció més enllà del seu perímetre tradicional.
Resumo:
Recommender systems attempt to predict items in which a user might be interested, given some information about the user's and items' profiles. Most existing recommender systems use content-based or collaborative filtering methods or hybrid methods that combine both techniques (see the sidebar for more details). We created Informed Recommender to address the problem of using consumer opinion about products, expressed online in free-form text, to generate product recommendations. Informed recommender uses prioritized consumer product reviews to make recommendations. Using text-mining techniques, it maps each piece of each review comment automatically into an ontology