39 resultados para Discrete Flavor Symmetries
Resumo:
Abstract: Asthma prevalence in children and adolescents in Spain is 10-17%. It is the most common chronic illness during childhood. Prevalence has been increasing over the last 40 years and there is considerable evidence that, among other factors, continued exposure to cigarette smoke results in asthma in children. No statistical or simulation model exist to forecast the evolution of childhood asthma in Europe. Such a model needs to incorporate the main risk factors that can be managed by medical authorities, such as tobacco (OR = 1.44), to establish how they affect the present generation of children. A simulation model using conditional probability and discrete event simulation for childhood asthma was developed and validated by simulating realistic scenario. The parameters used for the model (input data) were those found in the bibliography, especially those related to the incidence of smoking in Spain. We also used data from a panel of experts from the Hospital del Mar (Barcelona) related to actual evolution and asthma phenotypes. The results obtained from the simulation established a threshold of a 15-20% smoking population for a reduction in the prevalence of asthma. This is still far from the current level in Spain, where 24% of people smoke. We conclude that more effort must be made to combat smoking and other childhood asthma risk factors, in order to significantly reduce the number of cases. Once completed, this simulation methodology can realistically be used to forecast the evolution of childhood asthma as a function of variation in different risk factors.
Resumo:
We study all the symmetries of the free Schr odinger equation in the non-commu- tative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean boosts and momenta. These infinite high symmetries could be useful for constructing non-relativistic interacting higher spin theories. A finite-dimensional subalgebra is given by the Schröodinger algebra which, besides the Galilei generators, contains also the dilatation and the expansion. We consider the quantization of the symmetry generators in both the reduced and extended phase spaces, and discuss the relation between both approaches.
Resumo:
We study all the symmetries of the free Schrödinger equation in the non-commu- tative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean boosts and momenta. These infinite high symmetries could be useful for constructing non-relativistic interacting higher spin theories. A finite-dimensional subalgebra is given by the Schröodinger algebra which, besides the Galilei generators, contains also the dilatation and the expansion. We consider the quantization of the symmetry generators in both the reduced and extended phase spaces, and discuss the relation between both approaches.
Resumo:
Ordered weighted averaging (OWA) operators and their extensions are powerful tools used in numerous decision-making problems. This class of operator belongs to a more general family of aggregation operators, understood as discrete Choquet integrals. Aggregation operators are usually characterized by indicators. In this article four indicators usually associated with the OWA operator are extended to discrete Choquet integrals: namely, the degree of balance, the divergence, the variance indicator and Renyi entropies. All of these indicators are considered from a local and a global perspective. Linearity of indicators for linear combinations of capacities is investigated and, to illustrate the application of results, indicators of the probabilistic ordered weighted averaging -POWA- operator are derived. Finally, an example is provided to show the application to a specific context.
Resumo:
Many European states apply score systems to evaluate the disability severity of non-fatal motor victims under the law of third-party liability. The score is a non-negative integer with an upper bound at 100 that increases with severity. It may be automatically converted into financial terms and thus also reflects the compensation cost for disability. In this paper, discrete regression models are applied to analyze the factors that influence the disability severity score of victims. Standard and zero-altered regression models are compared from two perspectives: an interpretation of the data generating process and the level of statistical fit. The results have implications for traffic safety policy decisions aimed at reducing accident severity. An application using data from Spain is provided.
Resumo:
In this paper the authors propose a new closed contour descriptor that could be seen as a Feature Extractor of closed contours based on the Discrete Hartley Transform (DHT), its main characteristic is that uses only half of the coefficients required by Elliptical Fourier Descriptors (EFD) to obtain a contour approximation with similar error measure. The proposed closed contour descriptor provides an excellent capability of information compression useful for a great number of AI applications. Moreover it can provide scale, position and rotation invariance, and last but not least it has the advantage that both the parameterization and the reconstructed shape from the compressed set can be computed very efficiently by the fast Discrete Hartley Transform (DHT) algorithm. This Feature Extractor could be useful when the application claims for reversible features and when the user needs and easy measure of the quality for a given level of compression, scalable from low to very high quality.
Resumo:
This paper presents a new numerical program able to model syntectonic sedimentation. The new model combines a discrete element model of the tectonic deformation of a sedimentary cover and a process-based model of sedimentation in a single framework. The integration of these two methods allows us to include the simulation of both sedimentation and deformation processes in a single and more effective model. The paper describes briefly the antecedents of the program, Simsafadim-Clastic and a discrete element model, in order to introduce the methodology used to merge both programs to create the new code. To illustrate the operation and application of the program, analysis of the evolution of syntectonic geometries in an extensional environment and also associated with thrust fault propagation is undertaken. Using the new code, much more complex and realistic depositional structures can be simulated together with a more complex analysis of the evolution of the deformation within the sedimentary cover, which is seen to be affected by the presence of the new syntectonic sediments.
Resumo:
Describes a method to code a decimated model of an isosurface on an octree representation while maintaining volume data if it is needed. The proposed technique is based on grouping the marching cubes (MC) patterns into five configurations according the topology and the number of planes of the surface that are contained in a cell. Moreover, the discrete number of planes on which the surface lays is fixed. Starting from a complete volume octree, with the isosurface codified at terminal nodes according to the new configuration, a bottom-up strategy is taken for merging cells. Such a strategy allows one to implicitly represent co-planar faces in the upper octree levels without introducing any error. At the end of this merging process, when it is required, a reconstruction strategy is applied to generate the surface contained in the octree intersected leaves. Some examples with medical data demonstrate that a reduction of up to 50% in the number of polygons can be achieved