36 resultados para Discontinuous dynamic systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS). These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK) and by a response regulator (RR) that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call ‘‘third component’’) on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that the quasifission paths predicted by the one-body dissipation dynamics, in the slowest phase of a binary reaction, follow a quasistatic path, which represents a sequence of states of thermal equilibrium at a fixed value of the deformation coordinate. This establishes the use of the statistical particle-evaporation model in the case of dynamical time-evolving systems. Pre- and post-scission multiplicities of neutrons and total multiplicities of protons and α particles in fission reactions of 63Cu+92Mo, 60Ni+100Mo, 63Cu+100Mo at 10 MeV/u and 20Ne+144,148,154Sm at 20 MeV/u are reproduced reasonably well with statistical model calculations performed along dynamic trajectories whose slow stage (from the most compact configuration up to the point where the neck starts to develop) lasts some 35×10−21 s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the fluctuations of temporal criteria dynamics in the context of professional sport. Specifically, we try to verify the underlying deterministic patterns in the outcomes of professional basketball players. We use a longitudinal approach based on the analysis of the outcomes of 94 basketball players over ten years, covering practically players" entire career development. Time series were analyzed with techniques derived from nonlinear dynamical systems theory. These techniques analyze the underlying patterns in outcomes without previous shape assumptions (linear or nonlinear). These techniques are capable of detecting an intermediate situation between randomness and determinism, called chaos. So they are very useful for the study of dynamic criteria in organizations. We have found most players (88.30%) have a deterministic pattern in their outcomes, and most cases are chaotic (81.92%). Players with chaotic patterns have higher outcomes than players with linear patterns. Moreover, players with power forward and center positions achieve better results than other players. The high number of chaotic patterns found suggests caution when appraising individual outcomes, when coaches try to find the appropriate combination of players to design a competitive team, and other personnel decisions. Management efforts must be made to assume this uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network virtualisation is considerably gaining attentionas a solution to ossification of the Internet. However, thesuccess of network virtualisation will depend in part on how efficientlythe virtual networks utilise substrate network resources.In this paper, we propose a machine learning-based approachto virtual network resource management. We propose to modelthe substrate network as a decentralised system and introducea learning algorithm in each substrate node and substrate link,providing self-organization capabilities. We propose a multiagentlearning algorithm that carries out the substrate network resourcemanagement in a coordinated and decentralised way. The taskof these agents is to use evaluative feedback to learn an optimalpolicy so as to dynamically allocate network resources to virtualnodes and links. The agents ensure that while the virtual networkshave the resources they need at any given time, only the requiredresources are reserved for this purpose. Simulations show thatour dynamic approach significantly improves the virtual networkacceptance ratio and the maximum number of accepted virtualnetwork requests at any time while ensuring that virtual networkquality of service requirements such as packet drop rate andvirtual link delay are not affected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a result of the growing interest in studying employee well-being as a complex process that portrays high levels of within-individual variability and evolves over time, this present study considers the experience of flow in the workplace from a nonlinear dynamical systems approach. Our goal is to offer new ways to move the study of employee well-being beyond linear approaches. With nonlinear dynamical systems theory as the backdrop, we conducted a longitudinal study using the experience sampling method and qualitative semi-structured interviews for data collection; 6981 registers of data were collected from a sample of 60 employees. The obtained time series were analyzed using various techniques derived from the nonlinear dynamical systems theory (i.e., recurrence analysis and surrogate data) and multiple correspondence analyses. The results revealed the following: 1) flow in the workplace presents a high degree of within-individual variability; this variability is characterized as chaotic for most of the cases (75%); 2) high levels of flow are associated with chaos; and 3) different dimensions of the flow experience (e.g., merging of action and awareness) as well as individual (e.g., age) and job characteristics (e.g., job tenure) are associated with the emergence of different dynamic patterns (chaotic, linear and random).