78 resultados para Coupled-wave theory
Resumo:
A hybrid theory which combines the full nonlocal ¿exact¿ exchange interaction with the local spin-density approximation of density-functional theory is shown to lead to marked improvement in the description of antiferromagnetically coupled systems. Semiquantitative agreement with experiment is found for the magnitude of the coupling constant in La2CuO4, KNiF3, and K2NiF4. The magnitude of the unpaired spin population on the metal site is in excellent agreement with experiment for La2CuO4.
Resumo:
The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.
Resumo:
We develop several results on hitting probabilities of random fields which highlight the role of the dimension of the parameter space. This yields upper and lower bounds in terms of Hausdorff measure and Bessel-Riesz capacity, respectively. We apply these results to a system of stochastic wave equations in spatial dimension k >- 1 driven by a d-dimensional spatially homogeneous additive Gaussian noise that is white in time and colored in space.
Resumo:
We prove a characterization of the support of the law of the solution for a stochastic wave equation with two-dimensional space variable, driven by a noise white in time and correlated in space. The result is a consequence of an approximation theorem, in the convergence of probability, for equations obtained by smoothing the random noise. For some particular classes of coefficients, approximation in the Lp-norm for p¿1 is also proved.
Resumo:
The development of shear instabilities of a wave-driven alongshore current is investigated. In particular, we use weakly nonlinear theory to investigate the possibility that such instabilities, which have been observed at various sites on the U.S. coast and in the laboratory, can grow in linearly stable flows as a subcritical bifurcation by resonant triad interaction, as first suggested by Shrira eta/. [1997]. We examine a realistic longshore current profile and include the effects of eddy viscosity and bottom friction. We show that according to the weakly nonlinear theory, resonance is possible and that these linearly stable flows may exhibit explosive instabilities. We show that this phenomenon may occur also when there is only approximate resonance, which is more likely in nature. Furthermore, the size of the perturbation that is required to trigger the instability is shown in some circumstances to be consistent with the size of naturally occurring perturbations. Finally, we consider the differences between the present case examined and the more idealized case of Shrira et a/. [ 1997]. It is shown that there is a possibility of coupling between triads, due to the richer modal structure in more realistic flows, which may act to stabilize the flow and act against the development of subcritical bifurcations. Extensive numerical tests are called for.
Resumo:
Standard practice of wave-height hazard analysis often pays little attention to the uncertainty of assessed return periods and occurrence probabilities. This fact favors the opinion that, when large events happen, the hazard assessment should change accordingly. However, uncertainty of the hazard estimates is normally able to hide the effect of those large events. This is illustrated using data from the Mediterranean coast of Spain, where the last years have been extremely disastrous. Thus, it is possible to compare the hazard assessment based on data previous to those years with the analysis including them. With our approach, no significant change is detected when the statistical uncertainty is taken into account. The hazard analysis is carried out with a standard model. Time-occurrence of events is assumed Poisson distributed. The wave-height of each event is modelled as a random variable which upper tail follows a Generalized Pareto Distribution (GPD). Moreover, wave-heights are assumed independent from event to event and also independent of their occurrence in time. A threshold for excesses is assessed empirically. The other three parameters (Poisson rate, shape and scale parameters of GPD) are jointly estimated using Bayes' theorem. Prior distribution accounts for physical features of ocean waves in the Mediterranean sea and experience with these phenomena. Posterior distribution of the parameters allows to obtain posterior distributions of other derived parameters like occurrence probabilities and return periods. Predictives are also available. Computations are carried out using the program BGPE v2.0
Resumo:
A peculiar type of synchronization has been found when two Van der PolDuffing oscillators, evolving in different chaotic attractors, are coupled. As the coupling increases, the frequencies of the two oscillators remain different, while a synchronized modulation of the amplitudes of a signal of each system develops, and a null Lyapunov exponent of the uncoupled systems becomes negative and gradually larger in absolute value. This phenomenon is characterized by an appropriate correlation function between the returns of the signals, and interpreted in terms of the mutual excitation of new frequencies in the oscillators power spectra. This form of synchronization also occurs in other systems, but it shows up mixed with or screened by other forms of synchronization, as illustrated in this paper by means of the examples of the dynamic behavior observed for three other different models of chaotic oscillators.
Resumo:
We consider a renormalizable two-dimensional model of dilaton gravity coupled to a set of conformal fields as a toy model for quantum cosmology. We discuss the cosmological solutions of the model and study the effect of including the back reaction due to quantum corrections. As a result, when the matter density is below some threshold new singularities form in a weak-coupling region, which suggests that they will not be removed in the full quantum theory. We also solve the Wheeler-DeWitt equation. Depending on the quantum state of the Universe, the singularities may appear in a quantum region where the wave function is not oscillatory, i.e., when there is not a well-defined notion of classical spacetime.
Resumo:
A theory of network-entrepreneurs or "spin-off system" is presented in this paper for the creation of firms based on the community’s social governance. It is argued that firm’s capacity for accumulation depends on the presence of employees belonging to the same social/ethnic group with expectations of "inheriting" the firm and becoming entrepreneurs once they have been selected for their merits and loyalty towards their patrons. Such accumulation is possible because of the credibility of the patrons’ promises of supporting newcomers due to high social cohesion and specific social norms prevailing in the community. This theory is exemplified through the case of the Barcelonnettes, a group of immigrants from the Alps in the South of France (Provence) who came to Mexico in the XIX Century.
Resumo:
It is known that, in a locally presentable category, localization exists with respect to every set of morphisms, while the statement that localization with respect to every (possibly proper) class of morphisms exists in locally presentable categories is equivalent to a large-cardinal axiom from set theory. One proves similarly, on one hand, that homotopy localization exists with respect to sets of maps in every cofibrantly generated, left proper, simplicial model category M whose underlying category is locally presentable. On the other hand, as we show in this article, the existence of localization with respect to possibly proper classes of maps in a model category M satisfying the above assumptions is implied by a large-cardinal axiom called Vopënka's principle, although we do not know if the reverse implication holds. We also show that, under the same assumptions on M, every endofunctor of M that is idempotent up to homotopy is equivalent to localization with respect to some class S of maps, and if Vopënka's principle holds then S can be chosen to be a set. There are examples showing that the latter need not be true if M is not cofibrantly generated. The above assumptions on M are satisfied by simplicial sets and symmetric spectra over simplicial sets, among many other model categories.
Resumo:
Economies are open complex adaptive systems far from thermodynamic equilibrium, and neo-classical environmental economics seems not to be the best way to describe the behaviour of such systems. Standard econometric analysis (i.e. time series) takes a deterministic and predictive approach, which encourages the search for predictive policy to ‘correct’ environmental problems. Rather, it seems that, because of the characteristics of economic systems, an ex-post analysis is more appropriate, which describes the emergence of such systems’ properties, and which sees policy as a social steering mechanism. With this background, some of the recent empirical work published in the field of ecological economics that follows the approach defended here is presented. Finally, the conclusion is reached that a predictive use of econometrics (i.e. time series analysis) in ecological economics should be limited to cases in which uncertainty decreases, which is not the normal situation when analysing the evolution of economic systems. However, that does not mean we should not use empirical analysis. On the contrary, this is to be encouraged, but from a structural and ex-post point of view.
Resumo:
Ma (1996) studied the random order mechanism, a matching mechanism suggested by Roth and Vande Vate (1990) for marriage markets. By means of an example he showed that the random order mechanism does not always reach all stable matchings. Although Ma's (1996) result is true, we show that the probability distribution he presented - and therefore the proof of his Claim 2 - is not correct. The mistake in the calculations by Ma (1996) is due to the fact that even though the example looks very symmetric, some of the calculations are not as ''symmetric.''
Resumo:
This paper surveys the recent literature on convergence across countries and regions. I discuss the main convergence and divergence mechanisms identified in the literature and develop a simple model that illustrates their implications for income dynamics. I then review the existing empirical evidence and discuss its theoretical implications. Early optimism concerning the ability of a human capital-augmented neoclassical model to explain productivity differences across economies has been questioned on the basis of more recent contributions that make use of panel data techniques and obtain theoretically implausible results. Some recent research in this area tries to reconcile these findings with sensible theoretical models by exploring the role of alternative convergence mechanisms and the possible shortcomings of panel data techniques for convergence analysis.