51 resultados para Classification criterion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a heuristic method for learning error correcting output codes matrices based on a hierarchical partition of the class space that maximizes a discriminative criterion. To achieve this goal, the optimal codeword separation is sacrificed in favor of a maximum class discrimination in the partitions. The creation of the hierarchical partition set is performed using a binary tree. As a result, a compact matrix with high discrimination power is obtained. Our method is validated using the UCI database and applied to a real problem, the classification of traffic sign images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A prominent categorization of Indian classical music is the Hindustani and Carnatic traditions, the two styleshaving evolved under distinctly different historical andcultural influences. Both styles are grounded in the melodicand rhythmic framework of raga and tala. The styles differ along dimensions such as instrumentation,aesthetics and voice production. In particular, Carnatic music is perceived as being more ornamented. The hypothesisthat style distinctions are embedded in the melodic contour is validated via subjective classification tests. Melodic features representing the distinctive characteristicsare extracted from the audio. Previous work based on the extent of stable pitch regions is supported by measurements of musicians’ annotations of stable notes. Further, a new feature is introduced that captures thepresence of specific pitch modulations characteristic ofornamentation in Indian classical music. The combined features show high classification accuracy on a database of vocal music of prominent artistes. The misclassifications are seen to match actual listener confusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glasses of the rosette forming the main window of the transept of the Gothic Cathedral of Tarragona have been characterised by means of SEM/EDS, XRD, FTIR and electronic microprobe. The multivariate statistical treatment of these data allow to establish a classification of the samples forming groups having an historical significance and reflecting ancient restorations. Furthermore, the decay patterns and mechanisms have been determined and the weathering by-products characterised. It has been demonstrated a clear influence of the bioactivity in the decay of these glasses, which activity is partially controlled by the chemical composition of the glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glasses of the rosette forming the main window of the transept of the Gothic Cathedral of Tarragona have been characterised by means of SEM/EDS, XRD, FTIR and electronic microprobe. The multivariate statistical treatment of these data allow to establish a classification of the samples forming groups having an historical significance and reflecting ancient restorations. Furthermore, the decay patterns and mechanisms have been determined and the weathering by-products characterised. It has been demonstrated a clear influence of the bioactivity in the decay of these glasses, which activity is partially controlled by the chemical composition of the glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a new one-class classification ensemble strategy called approximate polytope ensemble is presented. The main contribution of the paper is threefold. First, the geometrical concept of convex hull is used to define the boundary of the target class defining the problem. Expansions and contractions of this geometrical structure are introduced in order to avoid over-fitting. Second, the decision whether a point belongs to the convex hull model in high dimensional spaces is approximated by means of random projections and an ensemble decision process. Finally, a tiling strategy is proposed in order to model non-convex structures. Experimental results show that the proposed strategy is significantly better than state of the art one-class classification methods on over 200 datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Development of three classification trees (CT) based on the CART (Classification and Regression Trees), CHAID (Chi-Square Automatic Interaction Detection) and C4.5 methodologies for the calculation of probability of hospital mortality; the comparison of the results with the APACHE II, SAPS II and MPM II-24 scores, and with a model based on multiple logistic regression (LR). Methods: Retrospective study of 2864 patients. Random partition (70:30) into a Development Set (DS) n = 1808 and Validation Set (VS) n = 808. Their properties of discrimination are compared with the ROC curve (AUC CI 95%), Percent of correct classification (PCC CI 95%); and the calibration with the Calibration Curve and the Standardized Mortality Ratio (SMR CI 95%). Results: CTs are produced with a different selection of variables and decision rules: CART (5 variables and 8 decision rules), CHAID (7 variables and 15 rules) and C4.5 (6 variables and 10 rules). The common variables were: inotropic therapy, Glasgow, age, (A-a)O2 gradient and antecedent of chronic illness. In VS: all the models achieved acceptable discrimination with AUC above 0.7. CT: CART (0.75(0.71-0.81)), CHAID (0.76(0.72-0.79)) and C4.5 (0.76(0.73-0.80)). PCC: CART (72(69- 75)), CHAID (72(69-75)) and C4.5 (76(73-79)). Calibration (SMR) better in the CT: CART (1.04(0.95-1.31)), CHAID (1.06(0.97-1.15) and C4.5 (1.08(0.98-1.16)). Conclusion: With different methodologies of CTs, trees are generated with different selection of variables and decision rules. The CTs are easy to interpret, and they stratify the risk of hospital mortality. The CTs should be taken into account for the classification of the prognosis of critically ill patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared spectroscopy (NIRS) was used to analyse the crude protein content of dried and milled samples of wheat and to discriminate samples according to their stage of growth. A calibration set of 72 samples from three growth stages of wheat (tillering, heading and harvest) and a validation set of 28 samples was collected for this purpose. Principal components analysis (PCA) of the calibration set discriminated groups of samples according to the growth stage of the wheat. Based on these differences, a classification procedure (SIMCA) showed a very accurate classification of the validation set samples : all of them were successfully classified in each group using this procedure when both the residual and the leverage were used in the classification criteria. Looking only at the residuals all the samples were also correctly classified except one of tillering stage that was assigned to both tillering and heading stages. Finally, the determination of the crude protein content of these samples was considered in two ways: building up a global model for all the growth stages, and building up local models for each stage, separately. The best prediction results for crude protein were obtained using a global model for samples in the two first growth stages (tillering and heading), and using a local model for the harvest stage samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many classification systems rely on clustering techniques in which a collection of training examples is provided as an input, and a number of clusters c1,...cm modelling some concept C results as an output, such that every cluster ci is labelled as positive or negative. Given a new, unlabelled instance enew, the above classification is used to determine to which particular cluster ci this new instance belongs. In such a setting clusters can overlap, and a new unlabelled instance can be assigned to more than one cluster with conflicting labels. In the literature, such a case is usually solved non-deterministically by making a random choice. This paper presents a novel, hybrid approach to solve this situation by combining a neural network for classification along with a defeasible argumentation framework which models preference criteria for performing clustering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose the use of the independent component analysis (ICA) [1] technique for improving the classification rate of decision trees and multilayer perceptrons [2], [3]. The use of an ICA for the preprocessing stage, makes the structure of both classifiers simpler, and therefore improves the generalization properties. The hypothesis behind the proposed preprocessing is that an ICA analysis will transform the feature space into a space where the components are independent, and aligned to the axes and therefore will be more adapted to the way that a decision tree is constructed. Also the inference of the weights of a multilayer perceptron will be much easier because the gradient search in the weight space will follow independent trajectories. The result is that classifiers are less complex and on some databases the error rate is lower. This idea is also applicable to regression

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnosis of community acquired legionella pneumonia (CALP) is currently performed by means of laboratory techniques which may delay diagnosis several hours. To determine whether ANN can categorize CALP and non-legionella community-acquired pneumonia (NLCAP) and be standard for use by clinicians, we prospectively studied 203 patients with community-acquired pneumonia (CAP) diagnosed by laboratory tests. Twenty one clinical and analytical variables were recorded to train a neural net with two classes (LCAP or NLCAP class). In this paper we deal with the problem of diagnosis, feature selection, and ranking of the features as a function of their classification importance, and the design of a classifier the criteria of maximizing the ROC (Receiving operating characteristics) area, which gives a good trade-off between true positives and false negatives. In order to guarantee the validity of the statistics; the train-validation-test databases were rotated by the jackknife technique, and a multistarting procedure was done in order to make the system insensitive to local maxima.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fossil crown wasp Electrostephanus petiolatus Brues comb. rev.(Stephanidae, Electrostephaninae) is re-described from a single male preserved in middle Eocene Baltic Amber. The holotype was lost or destroyed around the time of World War II and subsequent interpretations of its identity have been based solely on the brief descriptive comments provided by Brues in his original account. The new specimen matches the original description and illustration provided by Brues in every detail and we hereby consider them to be conspecific, selecting the specimen as a neotype for the purpose of stabilizing the nomenclature for this fossil species. This neotype exhibits a free first metasomal tergum and sternum, contrary to the assertion of previous workers who indicated these to be fused. Accordingly, this species does indeed belong to the genus Electrostephanus Brues rather than to Denaeostephanus Engel & Grimaldi (Stephaninae). Electrostephanus petiolatus is transferred to a new subgenus, Electrostephanodes n. subgen. , based on its elongate pseudo- petiole and slender gaster, but may eventually warrant generic status as the phylogenetic placement of these fossil lineages continues to be clarifi ed. A revised key to the Baltic amber crown wasps is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to define a new statistic, PVL, based on the relative distance between the likelihood associated with the simulation replications and the likelihood of the conceptual model. Our results coming from several simulation experiments of a clinical trial show that the PVL statistic range can be a good measure of stability to establish when a computational model verifies the underlying conceptual model. PVL improves also the analysis of simulation replications because only one statistic is associated with all the simulation replications. As well it presents several verification scenarios, obtained by altering the simulation model, that show the usefulness of PVL. Further simulation experiments suggest that a 0 to 20 % range may define adequate limits for the verification problem, if considered from the viewpoint of an equivalence test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: We used demographic and clinical data to design practical classification models for prediction of neurocognitive impairment (NCI) in people with HIV infection. Methods: The study population comprised 331 HIV-infected patients with available demographic, clinical, and neurocognitive data collected using a comprehensive battery of neuropsychological tests. Classification and regression trees (CART) were developed to btain detailed and reliable models to predict NCI. Following a practical clinical approach, NCI was considered the main variable for study outcomes, and analyses were performed separately in treatment-naïve and treatment-experienced patients. Results: The study sample comprised 52 treatment-naïve and 279 experienced patients. In the first group, the variables identified as better predictors of NCI were CD4 cell count and age (correct classification [CC]: 79.6%, 3 final nodes). In treatment-experienced patients, the variables most closely related to NCI were years of education, nadir CD4 cell count, central nervous system penetration-effectiveness score, age, employment status, and confounding comorbidities (CC: 82.1%, 7 final nodes). In patients with an undetectable viral load and no comorbidities, we obtained a fairly accurate model in which the main variables were nadir CD4 cell count, current CD4 cell count, time on current treatment, and past highest viral load (CC: 88%, 6 final nodes). Conclusion: Practical classification models to predict NCI in HIV infection can be obtained using demographic and clinical variables. An approach based on CART analyses may facilitate screening for HIV-associated neurocognitive disorders and complement clinical information about risk and protective factors for NCI in HIV-infected patients.