99 resultados para Career patterns
Resumo:
We study, both theoretically and experimentally, the dynamical response of Turing patterns to a spatiotemporal forcing in the form of a traveling-wave modulation of a control parameter. We show that from strictly spatial resonance, it is possible to induce new, generic dynamical behaviors, including temporally modulated traveling waves and localized traveling solitonlike solutions. The latter make contact with the soliton solutions of Coullet [Phys. Rev. Lett. 56, 724 (1986)] and generalize them. The stability diagram for the different propagating modes in the Lengyel-Epstein model is determined numerically. Direct observations of the predicted solutions in experiments carried out with light modulations in the photosensitive chlorine dioxide-iodine-malonic acid reaction are also reported.
Resumo:
We study the response of Turing stripe patterns to a simple spatiotemporal forcing. This forcing has the form of a traveling wave and is spatially resonant with the characteristic Turing wavelength. Experiments conducted with the photosensitive chlorine dioxide-iodine-malonic acid reaction reveal a striking symmetry-breaking phenomenon of the intrinsic striped patterns giving rise to hexagonal lattices for intermediate values of the forcing velocity. The phenomenon is understood in the framework of the corresponding amplitude equations, which unveils a complex scenario of dynamical behaviors.
Resumo:
We demonstrate that wetting effects at moving contact lines have a strong impact in viscous fingering patterns. Experiments in a rotating Hele-Shaw (HS) cell, dry or prewetted, show consistent morphological differences. When the wetting fluid invades a dry region, contact angle dynamics yield a kinetic contribution to the interface pressure drop that scales with capillary number as Ca2¿3 but is significantly larger than the Park-Homsy kinetic correction. Numerical results are in very good agreement with experiments and show that standard HS equations work best for prewetted cells.
Resumo:
We study the minimal class of exact solutions of the Saffman-Taylor problem with zero surface tension, which contains the physical fixed points of the regularized (nonzero surface tension) problem. New fixed points are found and the basin of attraction of the Saffman-Taylor finger is determined within that class. Specific features of the physics of finger competition are identified and quantitatively defined, which are absent in the zero surface tension case. This has dramatic consequences for the long-time asymptotics, revealing a fundamental role of surface tension in the dynamics of the problem. A multifinger extension of microscopic solvability theory is proposed to elucidate the interplay between finger widths, screening and surface tension.
Resumo:
The aim of this paper is to analyse how economic integration in Europe has affected industrial geographical concentration in Spain and explain what the driving forces behind industry location are. Firstly, we construct regional specialisation and geographical concentration indices for Spanish 50 provinces and 30 industrial sectors in 1979, 1986 and 1992. Secondly, we carry out an econometric analysis of the determinants of geographical concentration of industries. Our main conclusion is that there is no evidence of increasing specialisation in Spain between 1979 and 1992 and that the most important determinant of Spain¿s economic geography is scale economies. Furthermore, traditional trade theory has no effects in explaining the pattern of industrial concentration
Resumo:
The reelin gene encodes an extracellular protein that is crucial for neuronal migration in laminated brain regions. To gain insights into the functions of Reelin, we performed high-resolution in situ hybridization analyses to determine the pattern of reelin expression in the developing forebrain of the mouse. We also performed double-labeling studies with several markers, including calcium-binding proteins, GAD65/67, and neuropeptides, to characterize the neuronal subsets that express reelin transcripts. reelinexpression was detected at embryonic day 10 and later in the forebrain, with a distribution that is consistent with the prosomeric model of forebrain regionalization. In the diencephalon, expression was restricted to transverse and longitudinal domains that delineated boundaries between neuromeres. During embryogenesis,reelin was detected in the cerebral cortex in Cajal-Retzius cells but not in the GABAergic neurons of layer I. At prenatal stages, reelin was also expressed in the olfactory bulb, and striatum and in restricted nuclei in the ventral telencephalon, hypothalamus, thalamus, and pretectum. At postnatal stages, reelin transcripts gradually disappeared from Cajal-Retzius cells, at the same time as they appeared in subsets of GABAergic neurons distributed throughout neocortical and hippocampal layers. In other telencephalic and diencephalic regions,reelin expression decreased steadily during the postnatal period. In the adult, there was prominent expression in the olfactory bulb and cerebral cortex, where it was restricted to subsets of GABAergic interneurons that co-expressed calbindin, calretinin, neuropeptide Y, and somatostatin. This complex pattern of cellular and regional expression is consistent with Reelin having multiple roles in brain development and adult brain function.
Resumo:
Purpose: To describe (1) the clinical profiles and the patterns of use of long-acting injectable (LAI) antipsychotics in patients with schizophrenia at risk of nonadherence with oral antipsychotics, and in those who started treatment with LAI antipsychotics, (2) health care resource utilization and associated costs. Patients and methods: A total of 597 outpatients with schizophrenia at risk of nonadherence, according to the psychiatrist's clinical judgment, were recruited at 59 centers in a noninterventional prospective observational study of 1-year follow-up when their treatment was modified. In a post hoc analysis, the profiles of patients starting LAI or continuing with oral antipsychotics were described, and descriptive analyses of treatments, health resource utilization, and direct costs were performed in those who started an LAI antipsychotic. Results: Therapy modifications involved the antipsychotic medications in 84.8% of patients, mostly because of insufficient efficacy of prior regimen. Ninety-two (15.4%) patients started an LAI antipsychotic at recruitment. Of these, only 13 (14.1%) were prescribed with first-generation antipsychotics. During 1 year, 16.3% of patients who started and 14.9% of patients who did not start an LAI antipsychotic at recruitment relapsed, contrasting with the 20.9% who had been hospitalized only within the prior 6 months. After 1 year, 74.3% of patients who started an LAI antipsychotic continued concomitant treatment with oral antipsychotics. The mean (median) total direct health care cost per patient per month during the study year among the patients starting any LAI antipsychotic at baseline was 1,407 ( 897.7). Medication costs (including oral and LAI antipsychotics and concomitant medication) represented almost 44%, whereas nonmedication costs accounted for more than 55% of the mean total direct health care costs. Conclusion: LAI antipsychotics were infrequently prescribed in spite of a psychiatrist-perceived risk of nonadherence to oral antipsychotics. Mean medication costs were lower than nonmedication costs.
Resumo:
A model of a phase-separating two-component Langmuir monolayer in the presence of a photoinduced reaction interconverting two components is formulated. An interplay between phase separation, orientational ordering, and reaction is found to lead to a variety of nonequilibrium self-organized patterns, both stationary and traveling. Examples of the patterns, observed in numerical simulations, include flowing droplets, traveling stripes, wave sources, and vortex defects.
Resumo:
Propagation of localized orientational waves, as imaged by Brewster angle microscopy, is induced by low intensity linearly polarized light inside axisymmetric smectic-C confined domains in a photosensitive molecular thin film at the air/water interface (Langmuir monolayer). Results from numerical simulations of a model that couples photoreorientational effects and long-range elastic forces are presented. Differences are stressed between our scenario and the paradigmatic wave phenomena in excitable chemical media.
Resumo:
The oxidation of solutions of glucose with methylene-blue as a catalyst in basic media can induce hydrodynamic overturning instabilities, termed chemoconvection in recognition of their similarity to convective instabilities. The phenomenon is due to gluconic acid, the marginally dense product of the reaction, which gradually builds an unstable density profile. Experiments indicate that dominant pattern wavenumbers initially increase before gradually decreasing or can even oscillate for long times. Here, we perform a weakly nonlinear analysis for an established model of the system with simple kinetics, and show that the resulting amplitude equation is analogous to that obtained in convection with insulating walls. We show that the amplitude description predicts that dominant pattern wavenumbers should decrease in the long term, but does not reproduce the aforementioned increasing wavenumber behavior in the initial stages of pattern development. We hypothesize that this is due to horizontally homogeneous steady states not being attained before pattern onset. We show that the behavior can be explained using a combination of pseudo-steady-state linear and steady-state weakly nonlinear theories. The results obtained are in qualitative agreement with the analysis of experiments.
Resumo:
A simple kinetic model of a two-component deformable and reactive bilayer is presented. The two differently shaped components are interconverted by a nonequilibrium reaction, and a phenomenological coupling between local composition and curvature is proposed. When the two components are not miscible, linear stability analysis predicts, and numerical simulations show, the formation of stationary nonequilibrium composition/curvature patterns whose typical size is determined by the reactive process. For miscible components, a linearization of the dynamic equations is performed in order to evaluate the correlation function for shape fluctuations from which the behavior of these systems in micropipet aspiration experiments can be predicted.
Resumo:
The magnetically induced splay Fréedericksz transition is reexamined to look for pattern forming phenomena slightly above or below criticality. By using our traditional scheme of stochastic nematodynamic equations, situations are, respectively, found of transient and permanent predominance of transversal periodicities (wave numbers) along the direction perpendicular to the initial orientation within the sample. The relevance of these predictions in relation with recent observations in the electrically driven splay Fréedericksz transition, and in general with other pattern forming phenomena, is stressed.
Resumo:
We study the dynamics of the late stages of the Fréedericksz transition in which a periodic transient pattern decays to a final homogeneous state. A stability analysis of an unstable stationary pattern is presented, and equations for the evolution of the domain walls are obtained. Using results of previous theories, we analyze the effect that the specific dynamics of the problem, incorporating hydrodynamic couplings, has on the expected logarithmic domain growth law.