45 resultados para COPY NUMBER
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Social capital is viewed either as a proprietary asset that serves private interests, including those of entrepreneurs, or as a collective asset that supports trust-based transactions saving on transaction costs both in markets and within the boundaries of firms, and benefiting society as a whole. This paper explains the relative specialization between entrepreneurs and market-governed exchanges as a result of the interaction between social capital that lowers transaction costs, and the scale economies of ability in managerial jobs (Lucas 1978). The main hypothesis formulated in the paper is that higher social capital will benefit the hierarchy relatively more than the market as a governance mechanism, and therefore in economies with higher social capital, the equilibrium number of entrepreneurs will be lower and their average span of control larger than in economies with lower social capital. The empirical evidence, with data from the Spanish Autonomous Communities, is consistent with this prediction.
Resumo:
This report presents systematic empirical annotation of transcript products from 399 annotated protein-coding loci across the 1% of the human genome targeted by the Encyclopedia of DNA elements (ENCODE) pilot project using a combination of 5' rapid amplification of cDNA ends (RACE) and high-density resolution tiling arrays. We identified previously unannotated and often tissue- or cell-line-specific transcribed fragments (RACEfrags), both 5' distal to the annotated 5' terminus and internal to the annotated gene bounds for the vast majority (81.5%) of the tested genes. Half of the distal RACEfrags span large segments of genomic sequences away from the main portion of the coding transcript and often overlap with the upstream-annotated gene(s). Notably, at least 20% of the resultant novel transcripts have changes in their open reading frames (ORFs), most of them fusing ORFs of adjacent transcripts. A significant fraction of distal RACEfrags show expression levels comparable to those of known exons of the same locus, suggesting that they are not part of very minority splice forms. These results have significant implications concerning (1) our current understanding of the architecture of protein-coding genes; (2) our views on locations of regulatory regions in the genome; and (3) the interpretation of sequence polymorphisms mapping to regions hitherto considered to be "noncoding," ultimately relating to the identification of disease-related sequence alterations.
Resumo:
In a number of programs for gene structure prediction in higher eukaryotic genomic sequences, exon prediction is decoupled from gene assembly: a large pool of candidate exons is predicted and scored from features located in the query DNA sequence, and candidate genes are assembled from such a pool as sequences of nonoverlapping frame-compatible exons. Genes are scored as a function of the scores of the assembled exons, and the highest scoring candidate gene is assumed to be the most likely gene encoded by the query DNA sequence. Considering additive gene scoring functions, currently available algorithms to determine such a highest scoring candidate gene run in time proportional to the square of the number of predicted exons. Here, we present an algorithm whose running time grows only linearly with the size of the set of predicted exons. Polynomial algorithms rely on the fact that, while scanning the set of predicted exons, the highest scoring gene ending in a given exon can be obtained by appending the exon to the highest scoring among the highest scoring genes ending at each compatible preceding exon. The algorithm here relies on the simple fact that such highest scoring gene can be stored and updated. This requires scanning the set of predicted exons simultaneously by increasing acceptor and donor position. On the other hand, the algorithm described here does not assume an underlying gene structure model. Indeed, the definition of valid gene structures is externally defined in the so-called Gene Model. The Gene Model specifies simply which gene features are allowed immediately upstream which other gene features in valid gene structures. This allows for great flexibility in formulating the gene identification problem. In particular it allows for multiple-gene two-strand predictions and for considering gene features other than coding exons (such as promoter elements) in valid gene structures.
Resumo:
In multiuser detection, the set of users active at any time may be unknown to the receiver. In these conditions, optimum reception consists of detecting simultaneously the set of activeusers and their data, problem that can be solved exactly by applying random-set theory (RST) and Bayesian recursions (BR). However, implementation of optimum receivers may be limited by their complexity, which grows exponentially with the number of potential users. In this paper we examine three strategies leading to reduced-complexity receivers.In particular, we show how a simple approximation of BRs enables the use of Sphere Detection (SD) algorithm, whichexhibits satisfactory performance with limited complexity.
Resumo:
We examine a multiple-access communication system in which multiuser detection is performed without knowledge of the number of active interferers. Using a statistical-physics approach, we compute the single-user channel capacity and spectral efficiency in the large-system limit.
Resumo:
Minkowski's ?(x) function can be seen as the confrontation of two number systems: regular continued fractions and the alternated dyadic system. This way of looking at it permits us to prove that its derivative, as it also happens for many other non-decreasing singular functions from [0,1] to [0,1], when it exists can only attain two values: zero and infinity. It is also proved that if the average of the partial quotients in the continued fraction expansion of x is greater than k* =5.31972, and ?'(x) exists then ?'(x)=0. In the same way, if the same average is less than k**=2 log2(F), where F is the golden ratio, then ?'(x)=infinity. Finally some results are presented concerning metric properties of continued fraction and alternated dyadic expansions.
Resumo:
Whereas people are typically thought to be better off with more choices, studiesshow that they often prefer to choose from small as opposed to large sets of alternatives.We propose that satisfaction from choice is an inverted U-shaped function of thenumber of alternatives. This proposition is derived theoretically by considering thebenefits and costs of different numbers of alternatives and is supported by fourexperimental studies. We also manipulate the perceptual costs of information processingand demonstrate how this affects the resulting satisfaction function. We furtherindicate that satisfaction when choosing from a given set is diminished if people aremade aware of the existence of other choice sets. The role of individual differences insatisfaction from choice is documented by noting effects due to gender and culture. Weconclude by emphasizing the need to have an explicit rationale for knowing how muchchoice is enough.
Resumo:
Number theory, a fascinating area in mathematics and one of the oldest, has experienced spectacular progress in recent years. The development of a deep theoretical background and the implementation of algorithms have led to new and interesting interrelations with mathematics in general which have paved the way for the emergence of major theorems in the area. This report summarizes the contribution to number theory made by the members of the Seminari de Teoria de Nombres (UB-UAB-UPC) in Barcelona. These results are presented in connection with the state of certain arithmetical problems, and so this monograph seeks to provide readers with a glimpse of some specific lines of current mathematical research.
Resumo:
Following a model based on the SU(8) symmetry that treats heavy pseudoscalars and heavy vector mesons on an equal footing, as required by heavy quark symmetry, we study the interaction of baryons and mesons in coupled channels within an unitary approach that generates dynamically poles in the scattering T-matrix. We concentrate in the exotic channels with negative charm quantum number for which there is the experimental claim of one state.
Resumo:
Convective flows of a small Prandtl number fluid contained in a two-dimensional cavity subject to a lateral thermal gradient are numerically studied by using different techniques. The aspect ratio (length to height) is kept at around 2. This value is found optimal to make the flow most unstable while keeping the basic single-roll structure. Two cases of thermal boundary conditions on the horizontal plates are considered: perfectly conducting and adiabatic. For increasing Rayleigh numbers we find a transition from steady flow to periodic oscillations through a supercritical Hopf bifurcation that maintains the centrosymmetry of the basic circulation. For a Rayleigh number of about ten times that of the Hopf bifurcation the system initiates a complex scenario of bifurcations. In the conductive case these include a quasiperiodic route to chaos. In the adiabatic one the dynamics is dominated by the interaction of two Neimark-Sacker bifurcations of the basic periodic solutions, leading to the stable coexistence of three incommensurate frequencies, and finally to chaos. In all cases, the complex time-dependent behavior does not break the basic, single-roll structure.
Resumo:
Background: Current methodology of gene expression analysis limits the possibilities of comparison between cells/tissues of organs in which cell size and/or number changes as a consequence of the study (e.g. starvation). A method relating the abundance of specific mRNA copies per cell may allow direct comparison or different organs and/or changing physiological conditions. Methods: With a number of selected genes, we analysed the relationship of the number of bases and the fluorescence recorded at a present level using cDNA standards. A lineal relationship was found between the final number of bases and the length of the transcript. The constants of this equation and those of the relationship between fluorescence and number of bases in cDNA were determined and a general equation linking the length of the transcript and the initial number of copies of mRNA was deduced for a given pre-established fluorescence setting. This allowed the calculation of the concentration of the corresponding mRNAs per g of tissue. The inclusion of tissue RNA and the DNA content per cell, allowed the calculation of the mRNA copies per cell. Results: The application of this procedure to six genes: Arbp, cyclophilin, ChREBP, T4 deiodinase 2, acetyl-CoA carboxylase 1 and IRS-1, in liver and retroperitoneal adipose tissue of food-restricted rats allowed precise measures of their changes irrespective of the shrinking of the tissue, the loss of cells or changes in cell size, factors that deeply complicate the comparison between changing tissue conditions. The percentage results obtained with the present methods were essentially the same obtained with the delta-delta procedure and with individual cDNA standard curve quantitative RT-PCR estimation. Conclusion: The method presented allows the comparison (i.e. as copies of mRNA per cell) between different genes and tissues, establishing the degree of abundance of the different molecular species tested.