45 resultados para Bcr-abl Mutants


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The outer membrane permeability of Serratia marcescens was studied by comparing porin-deficient mutants with their parental strains. Omp1-deficient strains were selected by moxalactam resistance, whereas mutants lacking the Omp2 porin were obtained by experimental infection with the SMP2 phage, whose primary receptor is the Omp2 porin. The role of porins was demonstrated in quinolone accumulation assays, where semi-quantitative differences in accumulation were observed. Permeability coefficients to cephaloridine of Omp1 mutants were determined and compared with those of the parental strain. The clinical isolates S. marcescens HCPR1 and 866 showed 30- to 200-fold reduced permeability coefficients when Omp1 porin was absent

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The outer membrane permeability of Serratia marcescens was studied by comparing porin-deficient mutants with their parental strains. Omp1-deficient strains were selected by moxalactam resistance, whereas mutants lacking the Omp2 porin were obtained by experimental infection with the SMP2 phage, whose primary receptor is the Omp2 porin. The role of porins was demonstrated in quinolone accumulation assays, where semi-quantitative differences in accumulation were observed. Permeability coefficients to cephaloridine of Omp1 mutants were determined and compared with those of the parental strain. The clinical isolates S. marcescens HCPR1 and 866 showed 30- to 200-fold reduced permeability coefficients when Omp1 porin was absent

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The outer membrane permeability of Serratia marcescens was studied by comparing porin-deficient mutants with their parental strains. Omp1-deficient strains were selected by moxalactam resistance, whereas mutants lacking the Omp2 porin were obtained by experimental infection with the SMP2 phage, whose primary receptor is the Omp2 porin. The role of porins was demonstrated in quinolone accumulation assays, where semi-quantitative differences in accumulation were observed. Permeability coefficients to cephaloridine of Omp1 mutants were determined and compared with those of the parental strain. The clinical isolates S. marcescens HCPR1 and 866 showed 30- to 200-fold reduced permeability coefficients when Omp1 porin was absent

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The outer membrane permeability of Serratia marcescens was studied by comparing porin-deficient mutants with their parental strains. Omp1-deficient strains were selected by moxalactam resistance, whereas mutants lacking the Omp2 porin were obtained by experimental infection with the SMP2 phage, whose primary receptor is the Omp2 porin. The role of porins was demonstrated in quinolone accumulation assays, where semi-quantitative differences in accumulation were observed. Permeability coefficients to cephaloridine of Omp1 mutants were determined and compared with those of the parental strain. The clinical isolates S. marcescens HCPR1 and 866 showed 30- to 200-fold reduced permeability coefficients when Omp1 porin was absent

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Completion of DNA replication before mitosis is essential for genome stability and cell viability. Cellular controls called checkpoints act as surveillance mechanisms capable of detecting errors and blocking cell cycle progression to allow time for those errors to be corrected. An important question in the cell cycle field is whether eukaryotic cells possess mechanisms that monitor ongoing DNA replication and make sure that all chromosomes are fully replicated before entering mitosis, that is whether a replication-completion checkpoint exists. From recent studies with smc5–smc6 mutants it appears that yeast cells can enter anaphase without noticing that replication in the ribosomal DNA array was unfinished. smc5–smc6 mutants are proficient in all known cellular checkpoints, namely the S phase checkpoint, DNA-damage checkpoint, and spindle checkpoint, thus suggesting that none of these checkpoints can monitor the presence of unreplicated segments or the unhindered progression of forks in rDNA. Therefore, these results strongly suggest that normal yeast cells do not contain a DNA replication-completion checkpoint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Annotations of completely sequenced genomes reveal that nearly half of the genes identified are of unknown function, and that some belong to uncharacterized gene families. To help resolve such issues, information can be obtained from the comparative analysis of homologous genes in model organisms. Results: While characterizing genes from the retinitis pigmentosa locus RP26 at 2q31-q33, we have identified a new gene, ORMDL1, that belongs to a novel gene family comprising three genes in humans (ORMDL1, ORMDL2 and ORMDL3), and homologs in yeast, microsporidia, plants, Drosophila, urochordates and vertebrates. The human genes are expressed ubiquitously in adult and fetal tissues. The Drosophila ORMDL homolog is also expressed throughout embryonic and larval stages, particularly in ectodermally derived tissues. The ORMDL genes encode transmembrane proteins anchored in the endoplasmic reticulum (ER). Double knockout of the two Saccharomyces cerevisiae homologs leads to decreased growth rate and greater sensitivity to tunicamycin and dithiothreitol. Yeast mutants can be rescued by human ORMDL homologs. Conclusions: From protein sequence comparisons we have defined a novel gene family, not previously recognized because of the absence of a characterized functional signature. The sequence conservation of this family from yeast to vertebrates, the maintenance of duplicate copies in different lineages, the ubiquitous pattern of expression in human and Drosophila, the partial functional redundancy of the yeast homologs and phenotypic rescue by the human homologs, strongly support functional conservation. Subcellular localization and the response of yeast mutants to specific agents point to the involvement of ORMDL in protein folding in the ER.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yeast cells contain a family of three monothiol glutaredoxins: Grx3, 4, and 5. Absence of Grx5 leads to constitutive oxidative damage, exacerbating that caused by external oxidants. Phenotypic defects associated with the absence of Grx5 are suppressed by overexpression ofSSQ1 and ISA2, two genes involved in the synthesis and assembly of iron/sulfur clusters into proteins. Grx5 localizes at the mitochondrial matrix, like other proteins involved in the synthesis of these clusters, and the mature form lacks the first 29 amino acids of the translation product. Absence of Grx5 causes: 1) iron accumulation in the cell, which in turn could promote oxidative damage, and 2) inactivation of enzymes requiring iron/sulfur clusters for their activity. Reduction of iron levels in grx5 null mutants does not restore the activity of iron/sulfur enzymes, and cell growth defects are not suppressed in anaerobiosis or in the presence of disulfide reductants. Hence, Grx5 forms part of the mitochondrial machinery involved in the synthesis and assembly of iron/sulfur centers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genomic instability is related to a wide-range of human diseases. Here, we show that mitochondrial iron–sulfur cluster biosynthesis is important for the maintenance of nuclear genome stability in Saccharomyces cerevisiae. Cells lacking the mitochondrial chaperone Zim17 (Tim15/Hep1), a component of the iron–sulfur biosynthesis machinery, have limited respiration activity, mimic the metabolic response to iron starvation and suffer a dramatic increase in nuclear genome recombination. Increased oxidative damage or deficient DNA repair do not account for the observed genomic hyperrecombination. Impaired cell-cycle progression and genetic interactions of ZIM17 with components of the RFC-like complex involved in mitotic checkpoints indicate that replicative stress causes hyperrecombination in zim17Δ mutants. Furthermore, nuclear accumulation of pre-ribosomal particles in zim17Δ mutants reinforces the importance of iron–sulfur clusters in normal ribosome biosynthesis. We propose that compromised ribosome biosynthesis and cell-cycle progression are interconnected, together contributing to replicative stress and nuclear genome instability in zim17Δ mutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitotic chromosome segregation requires the removal of physical connections between sister chromatids. In addition to cohesin and topological entrapments, sister chromatid separation can be prevented by the presence of chromosome junctions or ongoing DNA replication. We will collectively refer to them as DNA-mediated linkages. Although this type of structures has been documented in different DNA replication and repair mutants, there is no known essential mechanism ensuring their timely removal before mitosis. Here, we show that the dissolution of these connections is an active process that requires the Smc5/6 complex, together with Mms21, its associated SUMO-ligase. Failure to remove DNA-mediated linkages causes gross chromosome missegregation in anaphase. Moreover, we show that Smc5/6 is capable to dissolve them in metaphase-arrested cells, thus restoring chromosome resolution and segregation. We propose that Smc5/6 has an essential role in the removal of DNA-mediated linkages to prevent chromosome missegregation and aneuploidy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutaredoxins are members of a superfamily of thiol disulfide oxidoreductases involved in maintaining the redox state of target proteins. In Saccharomyces cerevisiae, two glutaredoxins (Grx1 and Grx2) containing a cysteine pair at the active site had been characterized as protecting yeast cells against oxidative damage. In this work, another subfamily of yeast glutaredoxins (Grx3, Grx4, and Grx5) that differs from the first in containing a single cysteine residue at the putative active site is described. This trait is also characteristic for a number of glutaredoxins from bacteria to humans, with which the Grx3/4/5 group has extensive homology over two regions. Mutants lacking Grx5 are partially deficient in growth in rich and minimal media and also highly sensitive to oxidative damage caused by menadione and hydrogen peroxide. A significant increase in total protein carbonyl content is constitutively observed in grx5cells, and a number of specific proteins, including transketolase, appear to be highly oxidized in this mutant. The synthetic lethality of the grx5 and grx2 mutations on one hand and ofgrx5 with the grx3 grx4 combination on the other points to a complex functional relationship among yeast glutaredoxins, with Grx5 playing a specially important role in protection against oxidative stress both during ordinary growth conditions and after externally induced damage. Grx5-deficient mutants are also sensitive to osmotic stress, which indicates a relationship between the two types of stress in yeast cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saccharomyces cerevisiae cells contain three omega-class glutathione transferases with glutaredoxin activity (Gto1, Gto2, and Gto3), in addition to two glutathione transferases (Gtt1 and Gtt2) not classifiable into standard classes. Gto1 is located at the peroxisomes, where it is targeted through a PTS1-type sequence, whereas Gto2 and Gto3 are in the cytosol. Among the GTO genes, GTO2 shows the strongest induction of expression by agents such as diamide, 1-chloro-2,4-dinitrobenzene, tert-butyl hydroperoxide or cadmium, in a manner that is dependent on transcriptional factors Yap1 and/or Msn2/4. Diamide and 1-chloro-2,4-dinitrobenzene (causing depletion of reduced glutathione) also induce expression of GTO1 over basal levels. Phenotypic analyses with single and multiple mutants in the S. cerevisiae glutathione transferase genes show that, in the absence of Gto1 and the two Gtt proteins, cells display increased sensitivity to cadmium. A gto1-null mutant also shows growth defects on oleic acid-based medium, which is indicative of abnormal peroxisomal functions, and altered expression of genes related to sulfur amino acid metabolism. As a consequence, growth of the gto1 mutant is delayed in growth medium without lysine, serine, or threonine, and the mutant cells have low levels of reduced glutathione. The role of Gto1 at the S. cerevisiae peroxisomes could be related to the redox regulation of the Str3 cystathionine -lyase protein. This protein is also located at the peroxisomes in S. cerevisiae, where it is involved in transulfuration of cysteine into homocysteine, and requires a conserved cysteine residue for its biological activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saccharomyces cerevisiae Grx6 and Grx7 are two monothiol glutaredoxins whose active-site sequences (CSYS and CPYS, respectively) are reminiscent of the CPYC active-site sequence of classical dithiol glutaredoxins. Both proteins contain an N-terminal transmembrane domain which is responsible for their association to membranes of the early secretory pathway vesicles, facing the luminal side. Thus, Grx6 localizes at the endoplasmic reticulum and Golgi compartments, while Grx7 is mostly at the Golgi. Expression of GRX6 is modestly upregulated by several stresses (calcium, sodium, and peroxides) in a manner dependent on the Crz1-calcineurin pathway. Some of these stresses also upregulate GRX7 expression under the control of the Msn2/4 transcription factor. The N glycosylation inhibitor tunicamycin induces the expression of both genes along with protein accumulation. Mutants lacking both glutaredoxins display reduced sensitivity to tunicamycin, although the drug is still able to manifest its inhibitory effect on a reporter glycoprotein. Grx6 and Grx7 have measurable oxidoreductase activity in vivo, which is increased in the presence of tunicamycin. Both glutaredoxins could be responsible for the regulation of the sulfhydryl oxidative state at the oxidant conditions of the early secretory pathway vesicles. However, the differences in location and expression responses against stresses suggest that their functions are not totally overlapping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molting hormone ecdysone triggers chromatin changes via histone modifica- tions that are important for gene regulation. On hormone activation, the ecdysone receptor (EcR) binds to the SET domain-containing histone H3 methyltransferase trithorax-related protein (Trr). Methylation of histone H3 at lysine 4 (H3K4me), which is associated with tran- scriptional activation, requires several cofactors, including Ash2. We find that ash2 mutants have severe defects in pupariation and metamorphosis due to a lack of activation of ecdy- sone-responsive genes. This transcriptional defect is caused by the absence of the H3K4me3 marks set by Trr in these genes. We present evidence that Ash2 interacts with Trr and is re- quired for its stabilization. Thus we propose that Ash2 functions together with Trr as an ecdysone receptor coactivator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In a previous study, we demonstrated that Vibrio scophthalmi, the most abundant Vibrio species among the marine aerobic or facultatively anaerobic bacteria inhabiting the intestinal tract of healthy cultured turbot (Scophthalmus maximus), contains at least two quorum-sensing circuits involving two types of signal molecules (a 3-hydroxy-dodecanoyl-homoserine lactone and the universal autoinducer 2 encoded by luxS). The purpose of this study was to investigate the functions regulated by these quorum sensing circuits in this vibrio by constructing mutants for the genes involved in these circuits. Results. The presence of a homologue to the Vibrio harveyi luxR gene encoding a main transcriptional regulator, whose expression is modulated by quorumsensing signal molecules in other vibrios, was detected and sequenced. The V. scophthalmi LuxR protein displayed a maximum amino acid identity of 82% with SmcR, the LuxR homologue found in Vibrio vulnificus. luxR and luxS null mutants were constructed and their phenotype analysed. Both mutants displayed reduced biofilm formation in vitro as well as differences in membrane protein expression by mass-spectrometry analysis. Additionally, a recombinant strain of V. scophthalmi carrying the lactonase AiiA from Bacillus cereus, which causes hydrolysis of acyl homoserine lactones, was included in the study. Conclusions: V. scophthalmi shares two quorum sensing circuits, including the main transcriptional regulator luxR, with some pathogenic vibrios such as V. harveyi and V. anguillarum. However, contrary to these pathogenic vibrios no virulence factors (such as protease production) were found to be quorum sensing regulated in this bacterium. Noteworthy, biofilm formation was altered in luxS and luxR mutants. In these mutants a different expression profile of membrane proteins were observed with respect to the wild type strain suggesting that quorum sensing could play a role in the regulation of the adhesion mechanisms of this bacterium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Regeneration is the ability of an organism to rebuild a body part that has been damaged or amputated, and can be studied at the molecular level using model organisms. Drosophila imaginal discs, which are the larval primordia of adult cuticular structures, are capable of undergoing regenerative growth after transplantation and in vivo culture into the adult abdomen. Results: Using expression profile analyses, we studied the regenerative behaviour of wing discs at 0, 24 and 72 hours after fragmentation and implantation into adult females. Based on expression level, we generated a catalogue of genes with putative role in wing disc regeneration, identifying four classes: 1) genes with differential expression within the first 24 hours; 2) genes with differential expression between 24 and 72 hours; 3) genes that changed significantly in expression levels between the two time periods; 4) genes with a sustained increase or decrease in their expression levels throughout regeneration. Among these genes, we identified members of the JNK and Notch signalling pathways and chromatin regulators. Through computational analysis, we recognized putative binding sites for transcription factors downstream of these pathways that are conserved in multiple Drosophilids, indicating a potential relationship between members of the different gene classes. Experimental data from genetic mutants provide evidence of a requirement of selected genes in wing disc regeneration. Conclusions: We have been able to distinguish various classes of genes involved in early and late steps of the regeneration process. Our data suggests the integration of signalling pathways in the promoters of regulated genes.